Executive Summary of Restoration Plan

Purlear Creek Stream Restoration Project Wilkes County, North Carolina Project ID No. 010547501

Prepared for: NCDENR-Wetlands Restoration Program Raleigh, North Carolina

October 2002

©Kimley-Horn and Associates, Inc. 2002 Kimley-Horn and Associates, Inc.

Executive Summary of Restoration Plan

Purlear Creek Stream Restoration Project Wilkes County, North Carolina

Project ID No. 010547501

Prepared for: NCDENR – Wetlands Restoration Program Raleigh, North Carolina

> Prepared by: Kimley-Horn and Associates, Inc. 3001 Weston Parkway Cary, North Carolina 27513

> > October 2002 011795011

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn & Associates, Inc. shall be without liability to Kimley-Horn & Associates, Inc.

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	EXISTING CONDITIONS1
2.1 2.2 2.3 2.4	WATERSHED 1 CULTURAL AND ENVIRONMENTAL DATABASE SEARCHES 3 SITE DESCRIPTION 5 CHANNEL DESCRIPTION 6
3.0	RESTORATION GOALS AND OBJECTIVES11
3.1 3.2	DEFINITION OF RESTORATION
4.0	METHODOLOGY/DESIGN CONSIDERATIONS
4.1 4.2. 4.3 4.4 4.5	Reference Reaches 12 Regional Curves and Regime Equations 13 Natural Communities 14 Watershed Assessment 14 Survey (Topographic and Geomorphic) 14
5.0	PRELIMINARY RESTORATION PLAN14
5.1 5.2 5.3	VEGETATION/BUFFER PLANTINGS 15 DIMENSION, PATTERN, AND PROFILE. 16 FENCING AND STREAM CROSSINGS PLAN 17
6.0	MONITORING AND SUCCESS CRITERIA 17
6.1 6.2 6.3	Reference Photographs 18 Channel Stability 18 Plant Survival 19
7.0	MAINTENANCE 19
8.0	REFERENCES

the second se

Tables

Table 1Stream Segment Length and Drainage AreaTable 2Summary of Stream Materials

Figures

- Figure 1 Vicinity Map
- Figure 2 USGS Topographic Map and Watershed Boundary
- Figure 3 Project Site Map
- Figure 4 Reference Reach Locations
- Figure 5 Soils Map

Appendices

- Appendix A: On-Site Geomorphic Assessment
- Appendix B: Bank Erosion Hazard Index
- Appendix C: Materials
- Appendix D: Entrainment Calculations
- Appendix E: Regional and Local Hydrological Curves
- Appendix F: Reference Reaches
- Appendix G: Morphological Table
- Appendix H: EDR Report
- Appendix I: Site Photos

H:\PN\011795011\reports\Restoration_Planning_Document(final).doc

1.0 Introduction

The Purlear Creek Stream Restoration project is located in Wilkes County, North Carolina approximately 8 miles northwest of the Town of Wilkesboro (Figure 1). The project area includes Purlear Creek and numerous unnamed tributaries located on the Hayes property (Figure 3), which is currently managed for livestock.

Purlear Creek was identified as a potential stream restoration/mitigation opportunity by the North Carolina Department of Environment and Natural Resources (NCDENR) Wetland Restoration Program (WRP) based on an evaluation by WRP staff and on work done by the Wilkes County Soil and Water Conservation Service.

Kimley-Horn and Associates, Inc. (KHA) was retained to provide feasibility/planning, design, construction observation, and post-construction documentation services for Purlear Creek and its tributaries on the Hayes property. This document summarizes the background investigation, fatal flaw analysis, fieldwork, property owner input, and methodologies used in preparing the design.

2.0 Existing Conditions

2.1 Watershed

Purlear Creek is located within USGS hydrologic unit 0304010110090 in the Yadkin River Basin. The headwaters of Purlear Creek originate approximately 2 miles upstream of the northern property boundary on Rendezvous Mountain within the Blue Ridge physiographic province. Purlear Creek discharges into the North Prong of Lewis Fork approximately 1.5 miles downstream of the property boundary. The project area is located near the mountain/piedmont physiographic province boundary. Elevation of the channel ranges from 2,200 feet at the headwaters, to 1,200 feet at the confluence with the North Prong of Lewis Fork. See figure 2 for a map of the watershed.

The primary stream reach within the property, Purlear Creek, flows diagonally across the property from the northwest to the southeast. Four headwater tributaries, each with drainage areas less than 0.1 square miles, flow into Purlear Creek. Approximately

15,935 linear feet of perennial stream are located on the Hayes property. In order to evaluate and describe stream segments during the field evaluation, codes were given to each stream reach (Figure 3). Approximately 3,075 feet of reaches 1, 4, and 4a form the border between the Hayes property and a neighboring property. The remaining 12,860 feet are contained wholly within the Hayes property. All stream segments were evaluated during feasibility/planning efforts for the project. However, the project was phased in order to pursue stream restoration opportunities of the segments fully contained on the Hayes property. Phase I includes stream restoration of segments 1A, 2A, $2A_1$, $2A_2$, 2B, and 3.

The drainage area for the downstream most point of Purlear Creek within the project area is approximately 3 square miles. Most of the headwaters within the watershed are forested, and owned by the State of North Carolina as educational forest (Rendezvous Mountain). There are other farms/pasture upstream of the project site, which may present future opportunities for restoration. GIS analysis of watershed landuse using the National Landcover Data derived in 1991 by the United States Geological Service (USGS NLCD 1991) shows approximately 76% of watershed area in forested cover, approximately 24% in cultivation or pasture, and less than 1% as wetlands. From a windshield survey of the watershed, it appears that a small portion of the watershed area surrounding a the offsite portion of reach 4 east and northeast of the project area has been converted from forest and farmland to low density residential use. A significant increase in development for the watershed is not expected because a large portion of the watershed is state forest land. Drainage area by stream segment is shown in Table 1. Figure 3 shows the location of the stream segments. Appendix I, photo 1 shows the landuse and land cover of the watershed.

Table 1

Segment	Segment Length (linear feet)	Drainage Area (square mile)		
1	1,030	3.0		
1A	1,300	3.0		
2	2,630	2.6		
2A	1,640	1.6		
2A ₁	445	0.2		
2A ₂	890	1.5		
2B	1,490	0.1		
3	3,200	0.8		
Total Length	12,625			

Approximate Stream Segment Length and Drainage Area

2.2 Cultural and Environmental Database Searches

Environmental Data Resources (EDR) Report

In June 2002, Environmental Data Resources (EDR), Inc. conducted an environmental database search to identify potential or actual environmental concerns listed in the federal, state, or local regulatory agency databases. EDR did not identify any potential or actual environmental concerns within the project watershed. Appendix H contains the full database search report.

A Phase 1 Site Environmental Assessment was not performed. However, during field investigation/geomorphic assessment, hazardous materials were not observed, neither were fatal flaws due to hazardous materials identified.

State Historical Preservation Office (SHPO) and Archeology Office Database

KHA staff reviewed historical/archeological records for the project site in August 2002. No national, state, or locally listed or eligible historic structures or archaeology sites were listed in the State's files.

Natural Heritage Database Search

A database search of natural resources was performed by KHA through the North Carolina Natural Heritage Program. The following natural communities are located within the Purlear Creek watershed upstream from the project area in the vicinity of the Rendezvous Mountain State Forest.

- Chestnut-Oak Forest
- Acidic Cove Forest
- Dry-Mesic Oak-Hickory Forest
- Low Elevation Rocky Summit
- Pine-Oak Heath
- Rich Cove Forest

These communities are located upstream from the project. Therefore, it is anticipated that there would be no adverse impacts to the existing natural communities from the restoration project.

The wet pasture adjacent to the project (stream segments 4 and 4A, see figure 3)may provide potential habitat for the bog turtle (*Clemmy muhlenbergii*) which is listed by the state as a threatened species due to similarity in appearance. According to the North Carolina Natural Heritage Program (NCNHP), "the southern population of the bog turtle has this designation due to similarity of appearance to bog turtles in the threatened northern population." This designation "does not affect land management activities of private landowners in the southern states". (U.S. Fish and Wildlife Service, November 5, 1997 press release. http://www.nc-es.fws.gov/reptile,bogtur.htm) The NCNHP has not noted bog turtle occurrence for the project site USGS Quadrangle. According to the NCNHP, the habitat of the bog turtle consists of shallow, spring-fed fens, sphagnaceous bogs, marshy meadows, and pastures, with thick grassy cover, and crossed by slow, muddy bottomed streams and swamps with aquatic and semi-aquatic plants.

Summary of Environmental, Cultural and Natural Resource Database Search

According to the database review, Phase I work performed on the sites described in the attached Preliminary Restoration Plan section (Section 5.0) will not affect threatened and

endangered species, critical habitats, listed historical sites, or known archeological sites. No protected species issues were observed during the stream assessment field efforts for Phase I.

2.3 Site Description

Overview

KHA evaluated Purlear Creek and its four tributaries, as identified for restoration by WRP (Figure 3). All project reaches are located within open cattle pasture. The entire length of stream within the property was evaluated. Two valley types exist within the project area. Steeper valleys, 1.5% to 3% slopes, are located in the northwestern and northern portion of the project area and the southeastern portion lies within a broader valley, 0.7% to 1.5% slopes. Roughly corresponding to the valleys, two stream types, as identified by Rosgen, are present onsite with generally B stream types in the steeper valleys and generally C stream types located in the broader valleys. The average stream gradient is 1% for C stream types and 1.5% for the B stream types.

Figure 3 shows the location of the stream in relation to roads and existing structures/utilities within the study area.

Farm Facilities, Structures, and Utilities

Structures and utilities within the project corridor are shown on the attached Preliminary Restoration Plan.

Vegetation

The project area is predominantly pasture grass. The remaining vegetation, a mixture of hardwoods, is confined to the riparian corridor.

Soils

Based on the North Carolina Soil Survey (Wilkes County, 1997), the soils at the site are mapped as Masada sandy clay loam, Chewacla loam, Pacolet sandy clay loam, and

Braddock clay loam. The following is a description of the individual soil types mapped within the project area.

Masada sandy clay loam (MaC2 and MaB2): 2 to 8 percent slopes (eroded) and 8 to15 percent slopes (eroded). The Masada series consists of very deep well drained, moderately permeable soils on stream terraces in the piedmont.

Chewacla loam (CkA),:0 to2 percent slopes. The Chewacla series consists of very deep somewhat poorly drained moderately permeable soils on nearly level floodplains in the piedmont.

Pacolet sandy clay loam (PcC2): 8-15 percent slopes, eroded. The Pacolet series consists of very deep, well drained, moderately permeable soils on piedmont uplands.

Braddock clay loam (BrD2): 8 to 25 percent slopes, eroded. The Braddock series consists of very deep, well drained, moderately permeable soils on mountain stream terraces, foot slopes, and benches.

See Figure 5 for soil mapping.

2.4 Channel Description

Horizontal and Vertical Stability

The main channel of Purlear Creek, which includes the reaches $2A_2$, 2A, 1A and 1 (in order from upstream to downstream) exhibits both vertical and horizontal instability. The degree of instability declines from the upper sections to the lower sections of the main channel to reach 1A. Reach 1 has a vegetated buffer of medium sized hardwoods that range in width from 10 to 40 feet, and is more stable than the other reaches. The upper sections of the main channel, reaches $2A_2$ and 2A, have Bank Erosion Hazard Index (BEHI) descriptive ratings of Moderate and Moderate/High. The lower sections of the main channel, reaches 2 and 1A, have BEHI ratings of High to Very High/Extreme. The moderate bank stability of the upper reaches is attributed to greater root densities and depths and less severe bank angles. Entrainment calculations (appendix D) for reach 1A show that the stream is degrading within this section. Reach 1A appears to be migrating from a C4 to a G4 stream type as the stream continues to downcut. The

reaches upstream of 1A, 2 and 2A, classify as a C4 stream types but also have bank height ratios (greater than 1.3) that suggest a migration to a G4 also is occurring. The upper most reach, 2A₂, is classified as a F4 stream type that appears to be migrating toward a B4 or C4 stream type.

Purlear Creek (reaches 2, 1A, and 1) appears to have been modified to accommodate cattle operations. Sections of reach 2A have been moved to the valley edge and straightened to maximize usable pasture. Most of the length of reach 1A has been moved against the valley wall and straightened. All streams contained on the property are accessible to cattle. The hoof shear from the cattle has accelerated bank erosion and channel degradation. See photos 1 through 8 of Appendix I for photographic documentation of bank stability and cattle influences within the main channel of Purlear Creek.

Reach 2A₁, which joins the main channel in the northwest section of the property, appears to be stream type E5b migrating to a G5 through downcutting. With continued down cutting, the banks may fail, facilitating lateral erosion and conversion to a F5 stream type. The reaches tortuous meanders and steep, near vertical banks will likely fail because the bank vegetation's root length and density is inadequate to maintain bank stability (see Appendix I, photo 9). The BEHI rating for the reach is extreme. Cattle have open access to the reach and appear to be contributing to bank erosion and stream instability. Upstream of the property boundary, the stream also lies within an open pasture and is exposed to similar stresses as the onsite portion of the reach.

Reach 2B joins the main channel from the northern section of the property west of C.C Hayes Road. The upper section of 2B is set within a steep valley that flattens to a broad valley. During the field visits, it was noted that the reach does not maintain surface water through the length of the reach. The stream flow appears to go subterranean 1,200 feet upstream of the confluence with the main channel. It appears that the reach's channel has been relocated along this lower portion. The channel banks appear to be unstable with a BEHI score of High/Very High. The upper section of the reach within the steeper valley is a B5c stream type. This section is moderately stable (Appendix I, photo 10). However, the downstream section of the reach within the broader valley is

downcutting and has more vertical banks (Appendix I, photo 11). This section appears to be converting from a B to a G stream type. Cattle have access to this reach and have impacted the banks of the reach.

Reach 3 joins the main channel from the northern section of the property east of C.C. From the furthermost point upstream to approximately 1,200 feet Haves Road. downstream, the channel retains a vegetative buffer that ranges in widths of 10 to 40 feet. Vegetation within this buffer is mature and features several types of hardwoods (Appendix I, photo 12). Further downstream to the point where the reach joins the main channel, the buffer becomes discontinuous comprised of low-lying shrubs and grazed over grasses (Appendix I, photo 13). This buffer within the lower section provides limited bank protection. Based on field observations, the channel has been relocated to one side of the valley, likely to maximize available pasture for cattle. Abandoned oxbows were visible near the upper section of the reach (Appendix I, photo 14). From field measurements, the stream type is determined to be G4 with a high bank height ratio of 2.4 and a BEHI rating of Very High (Appendix I, photo 15 for picture of steep banks). Entrainment calculations (Appendix D) predict that the channel will continue to degrade and downcut causing further exasperation of bank instability. With further bank instability, the banks may fail, allowing the channel to widen and convert to F stream type. The entire reach is open to grazing and the stream banks have been impacted by cattle access.

Channel dimensions and profile data for each reach is presented in Appendix A. Entrainment and materials measurements for each reach is presented in Appendix C and D. A summary of morphological data for reaches 1A, 2, and 3 is included in the Project Morphological Table in the attached Restoration plans.

Channel Materials

The stream substrate varies by section along the stream network. Modified Wolman Pebble Counts were performed to classify the materials in the stream channel. Because of the absence of channel bars, sub-pavement samples were taken in place of bar samples (Appendix C for plots of the particle size distribution of surface and sub-pavement materials). A bimodal distribution of cobble and silt is representative of

channel materials of the project reaches. The abundance of silt can be attributed to high erosion rates from channel instability and hoof shear from cattle. The influence of hoof shear was most significant for reach 3. Because of the bank disturbance, particle sizes may be underestimated in the particle size distribution plots. The table below summarizes the channel materials based on the pebble counts for each stream reach surveyed.

TABLE 2 Channel Material									
Stream Segment	1A	2	2A	2A ₁	2A ₂	2B	3		
Sand/Silt (%)	38	45	51	95	31	89	46		
Gravel (%)	58	42	30	5	27	9	51		
Cobble (%)	4	13	19	0	43	2	3		
Boulder (%)	0	0	0	0	0	0	0		
Bedrock (%)	0	0	0	0	0	0	0		
D16 (mm)	0.251	N/A	0.076	0.079	.254	N/A	0.084		
D35 (mm)	1.34	0.64	0.31	0.14	4.23	0.09	1.11		
D50 (mm)	8.1	5.1	1.7	0.2	23.5	0.3	2.6		
D84 (mm)	38.9	54	71.7	0.5	126.4	1.5	13.6		
D95 (mm)	60.4	118.7	109.5	2	189.8	0	45		

Vegetation as Bank Protection

Three general types of vegetative stream buffers exist throughout the project area. The first type of vegetative buffer is 10 to 40 feet wide and comprised of mature hardwoods. This buffer provides the greatest bank protection onsite and is found in the upper portion of reach 2B, throughout reach 2A, parts of reach 2, the upper portions of reaches 3 and 4, and most of reach 1. The second buffer type has more sparse tree cover, limited widths not exceeding 10 feet, and is made up of younger and smaller hardwoods. This buffer provides limited bank protection and many of the trees along the bank are falling into the stream due to accelerated erosion. The third buffer type lacks any woody vegetation and consisting of only herbaceous vegetation providing the least bank protection of the three. The second and third buffer types surround reaches $2A_1$, $2A_2$,

downstream portions of reach 2B, portions of reach 2, downstream portions of reaches 3 and 4, and reach 1A.

Water Quality

NCDENR Division of Water Quality (DWQ) has designated Purlear Creek as a Classification C and Classification WS-IV. The C classification applies to freshwaters that are protected for secondary recreation, fishing, propagation, and survival of aquatic life and wildlife. The WS-IV classification applies to streams that are water supply streams to heavily developed areas. The upper reaches of Purlear Creek are designated as Class C. Two miles of Purlear Creek, upstream of the confluence with the North Prong of Lewis Fork, are designated as Class WS-IV.

Based on visual observations, the upper reaches of the stream appear to have good clarity. Water clarity decreases in the downstream direction. Cattle have unlimited access to the stream and the lack of a buffer produces thermal pollution. Cattle access was heaviest on segment 1A. Fish, snails, aquatic invertebrates, and salamanders were observed on the upper reaches of the stream. Dying fish were noted in section 3. No fish or animals were observed in section 1A, water clarity was extremely low, and a heavy odor from cattle usage was present. No water quality sampling was performed as a part of KHA's assessment.

Habitat

Habitat quality varied by stream segment with habitat quality generally decreasing in the downstream direction. Fish, salamanders, snails, and aquatic invertebrates were observed in sections 2A₁, 2A₂, 2A and 2B. Fewer animals were observed in section 2, and dying fish were observed. Habitat quality was very low in segment 1A due to lack of canopy cover, stress from heavy cattle use, and lack of stream features (pools, riffles, runs, and glides). Because the upland area adjacent to the streams is used primarily for cattle pasture, stream influenced terrestrial habitat is poor.

Flood Hazard

The FEMA FIRM Panel 370256 150B shows the project area is within Zone X, "an area that is determined to be outside the 1% and 0.2% annual chance floodplains."

3.0 Restoration Goals and Objectives

3.1 Definition of Restoration

For the purposes of this project, stream restoration is defined as "the process of converting an unstable, altered or degraded stream corridor, including adjacent riparian zone and flood-prone areas to its natural or referenced, stable conditions considering recent and future watershed conditions. This process also includes restoring the geomorphic dimension, pattern and profile as well as biological and chemical integrity, including transport of water and sediment produced by the stream's watershed in order to achieve dynamic equilibrium (*Internal Technical Guide for Stream Work in North Carolina*. April 2001 v.3.0).

3.2 Objectives

The objective of this project is to design adjustments to the stream reaches that will increase their long-term stability and create a more functional riparian ecological community. The design will adjust the stream's geomorphic dimensions, patterns, and profiles. The proposed changes will reflect the reference reaches' stable conditions and their current geomorphic conditions. Additionally, vegetated buffers that match proximal natural ecological communities found in similar physiographic and climatic regions will be planted. The reach will be designed to maximize natural design and natural parameters, and to account for physical constraints within the project area.

A mix of Priority I and Priority II restoration approaches will be used for this project. Where applicable the Priority I restoration process will return stream channels to relic channels to return water table levels to historic values. In all applicable areas both Priority I and Priority II will be used to re-establish an active floodplain and stabilize the stream banks (Rosgen 1997). This method will decrease stream bank erosion, establish an active floodplain reduce channel stress during floods, improve aquatic habitat, and reduce fine sediment.

4.0 Methodology/Design Considerations

The design methodology for Purlear Creek follows guidelines set forth in NCDENR's *Internal Technical Guide for Stream Work in North Carolina*, April 2001 v.3.0. A summary of the analysis and coordination performed includes:

- Reference reach geomorphic survey (Rosgen Level III)
- Assessment of natural communities (both existing and reference)
- Assessment of the watershed's condition and potential
- Rosgen Level III classification of the stream
- Geomorphic field measurements
- Identification of constraints and opportunities
- Detailed topographic and geomorphic survey of the project corridor

A preliminary plan was developed using the above analysis (see the attached Restoration Plan).

4.1 Reference Reaches

Four reference reaches were identified and chosen to serve as a blueprint for design. Two reference reaches were used as templates for the B stream types and two reference reaches were used for C stream types. One B stream reference reach is located upstream of the project's reach 3 within an adjacent property located north of the project property. The other B stream reference is located on Upper Big Warrior Creek southeast of the town of Wilkesboro. Both C stream reference reaches are located within Basin Creek north of the project area. The locations of the reference reaches are shown in Figure 4.

The B stream type reference reach upstream of the Hayes Property appears to have been relocated and straightened in the past. The stream now has well established bank vegetation, stable banks, and appears to be neither degrading nor aggrading. The stream has built a floodplain within a confined valley and has stable pattern and profile with low sinuosity and established pools and riffles. Based on the Rosgen classification system, this section of Purlear Creek is classified as a B4c stream type. The information gained from the reference was used to design the proposed stream's restoration pattern and profile. This reference reach was chosen as an excellent example of a stable stream within a limited corridor (low belt width and sinuosity). Due to a limited easement, the restoration of Purlear Creek will require the construction of a stream with a low meander width ratio and a low sinuosity.

The remaining reference reaches were surveyed by other groups for other stream restoration projects. Reference data for Upper Big Warrior Creek was developed by Micky Clemmons and Brent Burgess of the North Carolina Wildlife Resources Commission. The Natural Resource Conservation Service (NRCS) developed reference reach data for Basin Creek. The reference reaches were selected for this project because of their proximity to the project site and similarity to the stream types of the project reaches.

The complete morphologic measurements of all reference reaches are provided in the Preliminary Restoration Plan. This morphologic measurement table is per Appendix B of the *Internal Technical Guide for Stream Work in North Carolina*, April 2001 v.3.0. Additional information pertaining to the reference reaches is located in Appendix F.

4.2. Regional Curves and Regime Equations

Due to the project area's location (at the boundary of the piedmont and mountain physiographic regions), the North Carolina Piedmont Rural and Mountain Rural Regional Curves were used to check the primary stream's bankfull characteristics (width, depth, cross-sectional area, and discharge). Local curves showing the relationship between channel dimensions and drainage areas were developed using data from the reference reaches discussed in section 4.1. The local curve's width and cross-sectional area values were lower than those of both the piedmont and mountain regional curves. The Piedmont and Mountain Regional Curves and locally derived curves are provided in Appendix E for reference.

4.3 Natural Communities

The project area is located within active pasture that has not been identified as a natural community of concern. Restoration activities will not impact any identified natural communities of concern and the resulting restoration may enhance upstream communities identified in Section 2.2.

4.4 Watershed Assessment

The watershed's conditions, as described in Section 2.1 of this report, were assessed by field reconnaissance and aerial photography. For the purpose of this design, it was assumed that there would be no major future commercial/industrial development or significant clear cutting timber operations.

4.5 Survey (Topographic and Geomorphic)

A detailed survey of the site showed minimal physical limitations to restoration design. However, a limited easement (25 feet from bankfull) for construction is likely. Cattle access and stream crossings will be coordinated with the property owner and NRCS. Alternative water sources for the cattle will be constructed, and fencing will eliminate cattle access to the restored streams. A detailed description of the corridor's existing conditions is included in Sections 2.2 and 2.3 of this report. The morphology of Purlear Creek in the project area is provided in the Morphology Measurement Table in the attached Preliminary Restoration Plan.

5.0 Preliminary Restoration Plan

The preliminary restoration plan for Purlear Creek involves restoring the altered stream corridor (including adjacent riparian zones) to its referenced, stable condition. The design is intended to account for the property owner's needs as well as physical constraints (utilities/roads/limited easement) within the project area. Restoration will modify the stream's dimension, pattern, and profile to stable conditions.

Priority I and II restoration approaches (Rosgen, 1997) will be used to convert the existing G or F streams to stable B or C stream types with active floodplains at either

H:\PN\011795011\reports\Restoration_Planning_Document(final).doc

historic channel elevation (Priority I) or the existing channel elevation (Priority II). For some sections of the stream, using the Priority I process the channel will be reestablished on its previous floodplain using relic channel or construction of a new bankfull channel. The existing incised channel will be filled. For the remaining portions of the stream, Priority II will modify the existing banks and channel. In addition, instream structures will be used to protect stream banks, provide habitat, control grade, and protect facilities and riparian buffers. A vegetated woody buffer (excluded from cattle) will be included in the restoration plan. The buffer will be 20 feet along Purlear Creek and 15 feet along its tributaries.

In-stream structures such as rock cross vanes, root wads, rock vanes, and log vanes will be incorporated into the mitigation project. For additional details on the in-stream structures and approximate locations of known structures, refer to the attached Preliminary Restoration Plan. Some in-stream structures may need to be eliminated from or added to the restoration plan during final design and/or construction.

5.1 Vegetation/Buffer Plantings

Prior to the establishing a riparian buffer, the area will be sprayed with an aerial systemic herbicide approved for wetland use. The application of herbicide will occur during the growing season.

The riparian buffer will consist of three zones. Zone 1 is the stream bank zone consisting of tree and shrub species and native herbaceous seeding typically found along stream banks in the region. Zone 2 is a forested riparian area consisting of selected tree and shrub species, with varying tolerances of inundation and saturation, to be selectively planted based on microtopography and moisture regime. Zone 3 is a grass filter strip designed to promote dispersed flow into the forested riparian zone (Zone 2).

Zones 1 and 2 will be planted with transplants, livestakes and bare root seedlings (depending on available stock) design plans, climate, and cost. Planting spacing will be determined according to planting type and will be included in final design plans. The

entire easement will be planted. A preliminary species list and plan view riparian buffer schematic is included in the attached Preliminary Restoration Plan.

5.2 Dimension, Pattern, and Profile

Much of the stream is a G or F channel with some sections that have been straightened and are now linear. These sections will be modified through Priority I and II restoration (Rosgen, 1997) to the appropriate stable/referenced B or C stream for the existing valley types and channel slopes.

Proposed channel dimensions, patterns, and profiles were created using dimensionless ratios from reference reaches and equations derived from locally generated geomorphic curves (see section 4.2). Each proposed channel dimension was based on an initial bankfull cross-sectional area and bankfull width. For a typical reach, the cross-sectional area and width were calculated using the locally derived geomorphic equation and the drainage area of that reach. Bankfull mean depth and width to depth ratios were calculated from the cross-sectional area and width. For each typical reach, the resulting bankfull cross-sectional area, width, and depth were verified with entrainment calculations. The remaining morphological dimensions of the typical reaches were calculated using the calculated bankfull width, bankfull depth, and valley slopes with reference reach ratios from the appropriate set of "B" type or "C" type reference reaches. Using professional judgment, some morphological ratios used for the proposed channels were modified or deviating slightly from the reference ratio. The modifications are presented below:

- For "B" stream type proposed low bank height to max bank height ratio, the value was set to 1.0 disregarding the value of 2.8 from the reference reach. The adjusted value better represents a non-incised "B" stream type
- For "B" stream type proposed meander with ratio, the value was set to 10 disregarding reference reach value of 8. This was done to decrease the arc angle of the meander bend.
- For "C" stream type proposed ratio of riffle slope to average slope, the reference value 3.6 was disregarded in determining the proposed value because the value 3.6 for this stream/valley type is likely too high.

To match the proposed plan features and reference condition, the stream's profile will be modified with grade control structures. The profile will create the appropriate local grade changes that are necessary to create the features (riffles, runs, pools, and glides) associated with B or C stream types.

The stream's new dimension will provide the appropriate cross-sectional area and width to depth ratio to transport sediment and the bankfull discharge. In areas using Priority I restoration, the new channel will be established on the previous floodplain using relic channel and a newly constructed bankfull channel. The existing incised channel will be filled. For areas using Priority II restoration, the existing channel will be modified to an appropriate cross sectional area and to establish and active floodplain.

The stream's pattern will be modified, where possible, to add stream length and to provide appropriate (reference) geometry. This geometry includes meander length, radius of curvature, belt width, and amplitude.

The proposed Priority I and II stream restoration plan (Rosgen, 1997) is shown in the attached Preliminary Restoration Plan.

5.3 Fencing and Stream Crossings Plan

Exclusionary fencing will be installed along the length of the easement. KHA will work with NRCS and the property owner to determine the number and location of stream crossings and fencing. NRCS's guidelines for exclusionary fencing and cattle crossings will be followed.

6.0 Monitoring and Success Criteria

The restoration design will be monitored for success through photographs, a channel stability assessment, and an evaluation of plant survival.

6.1 Reference Photographs

<u>Monitoring</u>: Photographs will be taken throughout the monitoring period to evaluate vegetative growth and the stability of instream structures along the restored stream's corridor. The location of the photograph points will be established and marked with stakes and a map with notations of the photo reference points will be generated. Photomonitoring will include lateral (taken looking at the channel bars) as well as longitudinal photographs (taken looking upstream and downstream).

<u>Success</u> <u>Criteria</u>: The photographs will be used to subjectively evaluate the aggradation/degradation of the channel, bank erosion, structure stability, the growth of riparian vegetation, and the effectiveness of erosion control measures. The longitudinal photos should indicate the absence of mid-channel bars or an excessive increase in channel depth. The lateral photos should not indicate excessive erosion or continuing degradation of the bank over time. The successional maturation of riparian vegetation should be observed in a series of photos taken over time.

6.2 Channel Stability

<u>Monitoring</u>: For each Rosgen classified stream type, permanent cross-sections will be established and monitored along the restored stream's corridor. Cross-sections will be placed to monitor structures and/or features that may have an increased risk of failure. The location of each cross-section will be marked to establish the exact transect location. A common benchmark will be used for cross-sections. This benchmark will be used consistently to facilitate the easy comparison of year-to-year data.

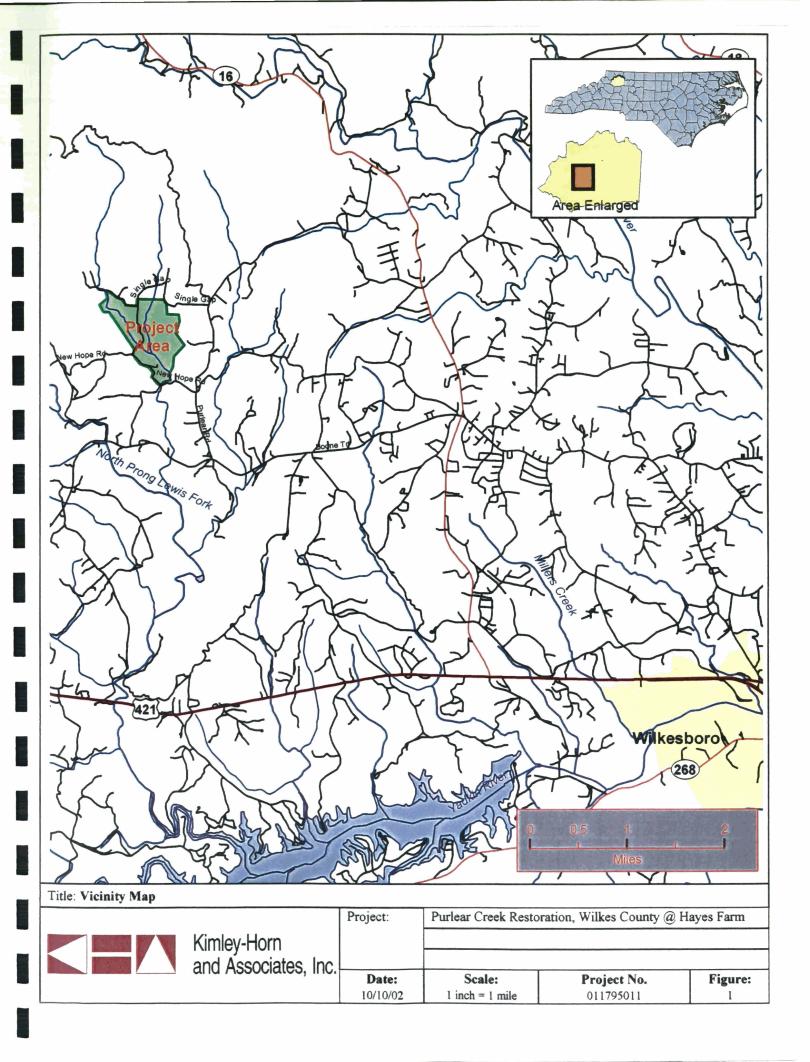
<u>Success</u> <u>Criteria</u>: Judgements of success or failure of restoration activities using this data will be subjective. If there are no or minimal changes to the cross-sections of the "as-built" during the monitored years, the restoration will be considered successful. Any minimal changes to the cross-sections during the monitoring period will be evaluated to determine whether they represent a movement toward a more unstable condition (down-cutting, deposition, erosion) or whether they are minor changes that represent an increase in stability (settling, vegetative changes, decrease in width/depth ratio). Unstable conditions that require redemption will indicate failure of restoration activities.

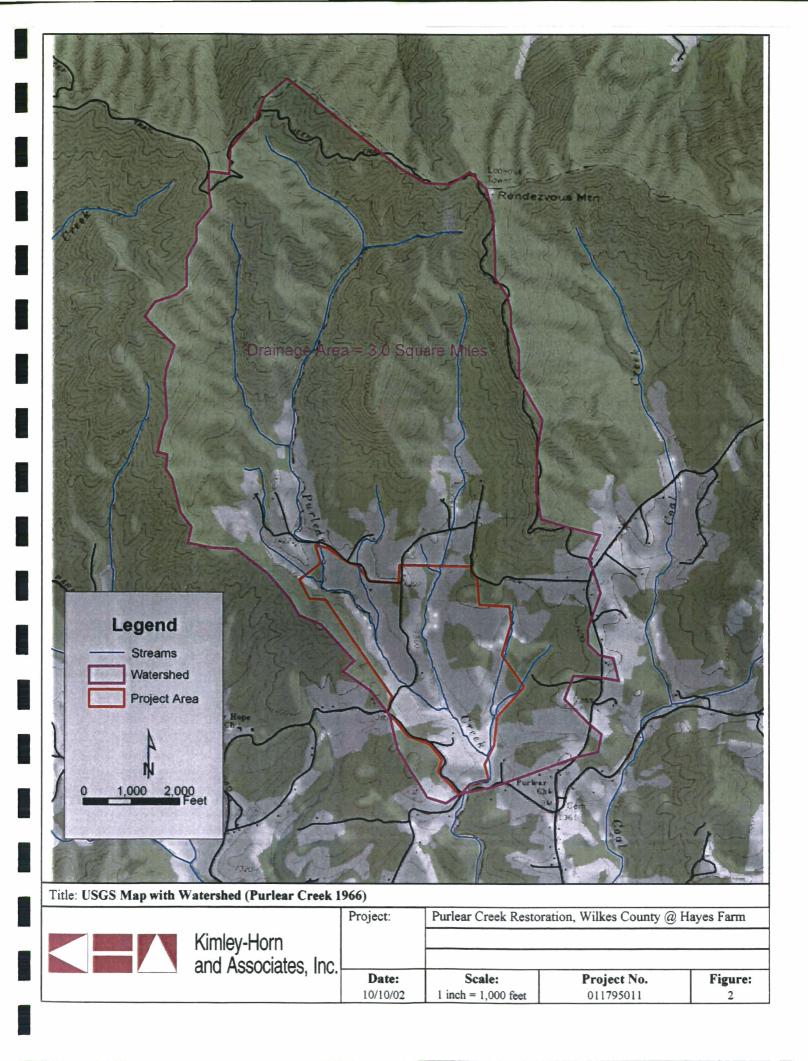
To establish vegetation in restoration areas, riparian and upland mixes, seeds, bare root, and live stake vegetation will be planted, as shown on the Preliminary Restoration Plan or as required in the contract's Special Provisions and Technical Specifications.

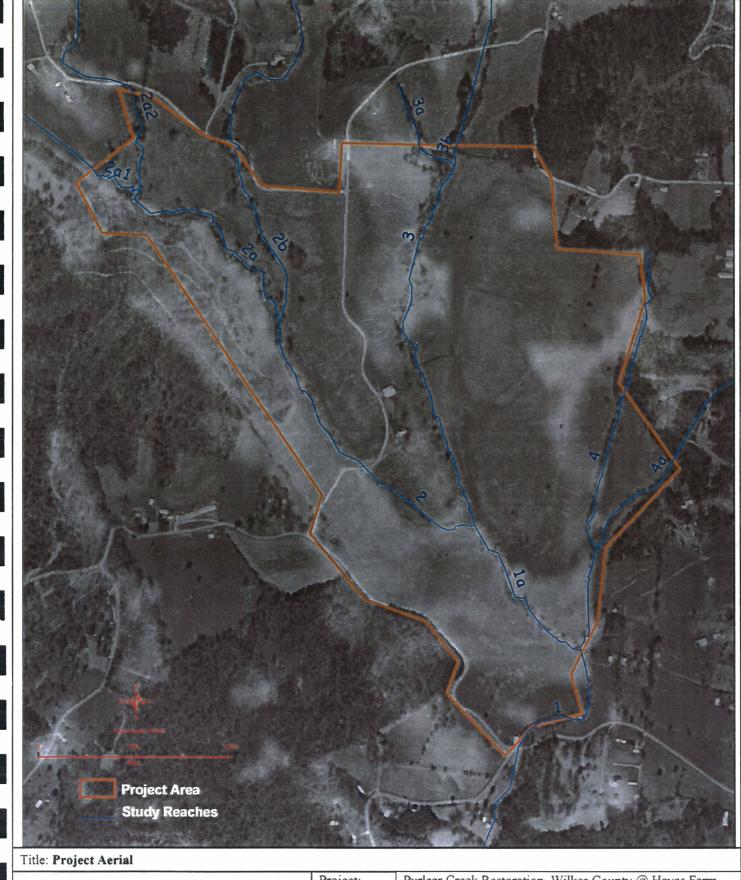
<u>Monitoring</u>: The survival of vegetation will be evaluated using survival plots or direct counts. The survival of plantings will be evaluated along the stream corridor of the restoration site.

<u>Success</u> <u>Criteria</u>: For the plantings to be considered successful, the planting density will need to be a minimum of 320 stems per acre after 5 years.

7.0 Maintenance

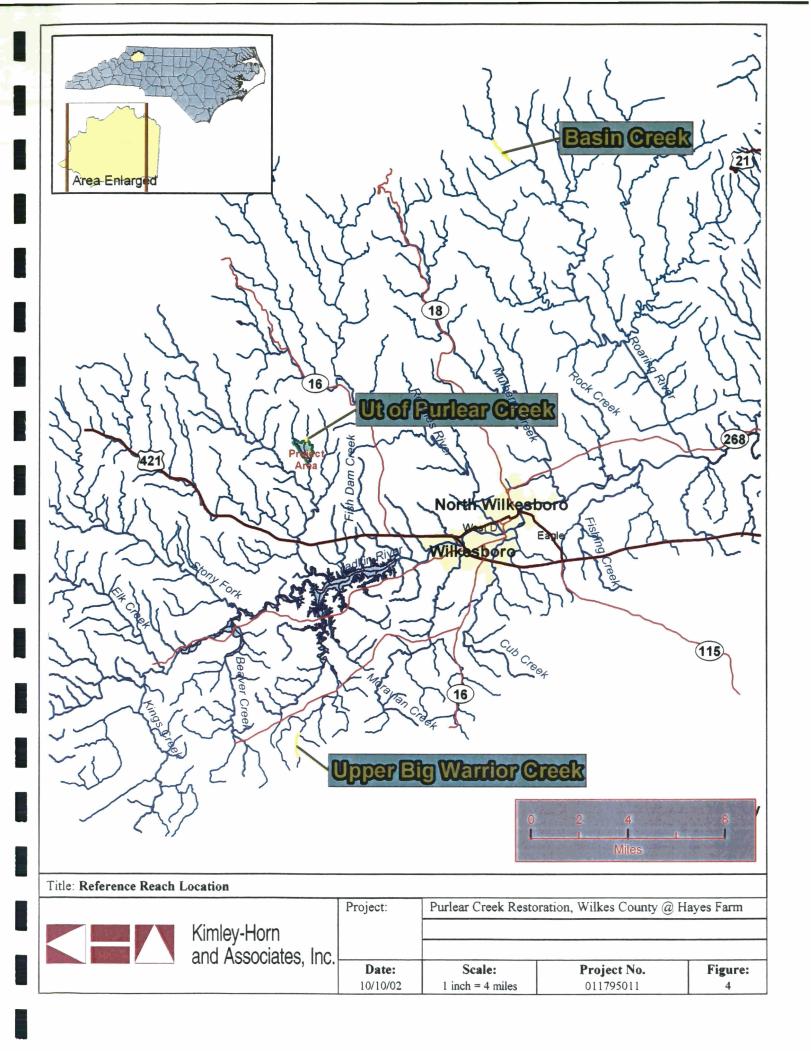

The contractor will guarantee all vegetation for one year from the time of planting, per the contract's Special Provisions and Technical Specifications. After one year, WRP will remove dead or injured plants and replace them accordingly to achieve restoration goals.

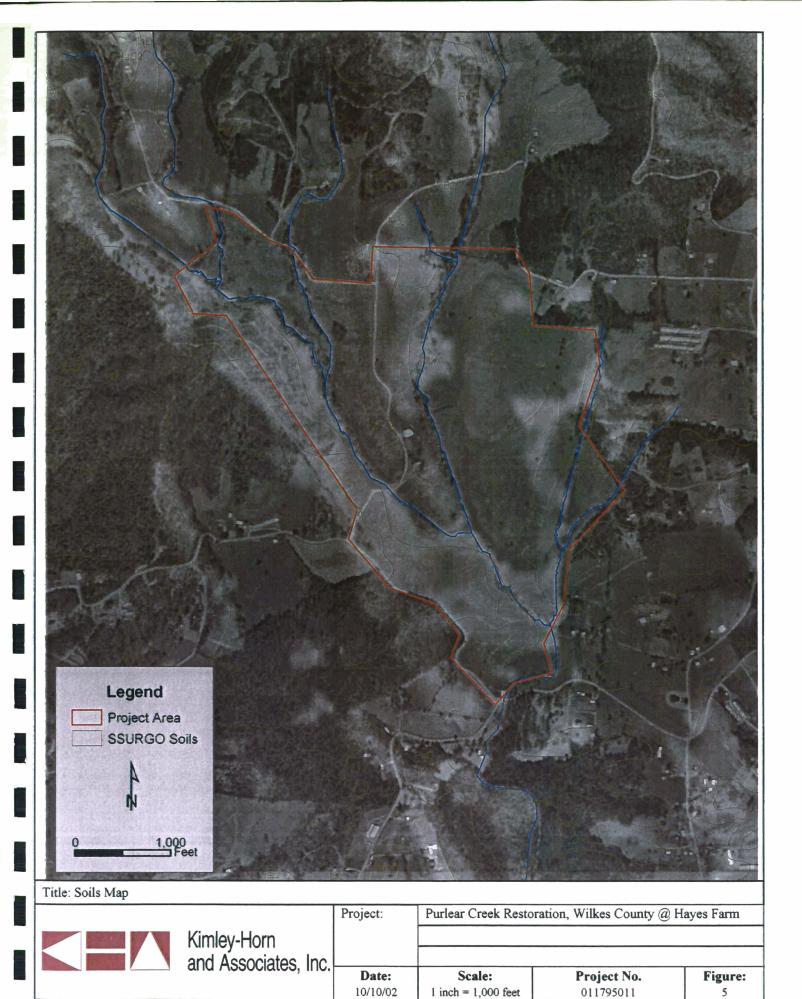

Invasive exotic plant species should be identified and treated for a minimum of five years. For woody invasive plants, the stem should be cut off at ground level and a 25 percent solution of appropriate herbicide (Rodeo for riparian areas) applied directly to the cut stump. Early fall is the best time to apply this treatment. For herbaceous weeds, use a herbicide and follow the manufacturer's suggested application rates.


8.0 References

- The Division of Land Resources (DLR) and The Division of Water Quality (DWQ), 2001 v.3.0. Internal Technical Guide for Stream Work in North Carolina.
- Hall, Karen. 2001. North Carolina Stream Restoration Institute NCSU, *Recommended Native Plant Species for Stream Restoration in North Carolina.*
- North Carolina Natural Heritage Program, *Explanation of Codes for County and Quad Status Lists*. http://www.ncsparks.net/nhp/codes.html.
- North Carolina Stream Restoration Institute, *Rural-Piedmont Regional Curves*. www5.bae.ncsu.edu/programs/extension/wqg/sri/urbanpiedmont.html.
- Rosgen, David L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- Rosgen, David L. 1997. A Geomorphologic Approach To Restoration Of Incised Rivers, Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision.
- United State Geological Survey. 1966. USGS 7.5 Minute Series Topographical Maps Purlear, NC Quadrangle. US Geological Survey. Reston, Virginia.

Figures

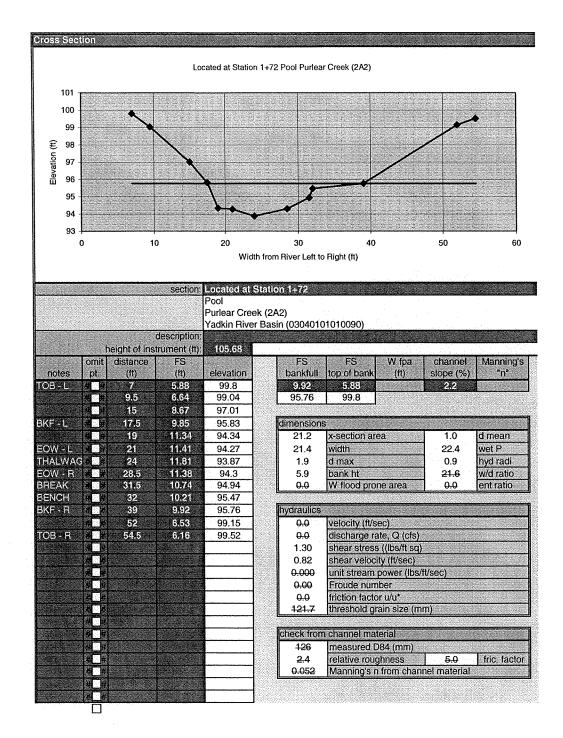




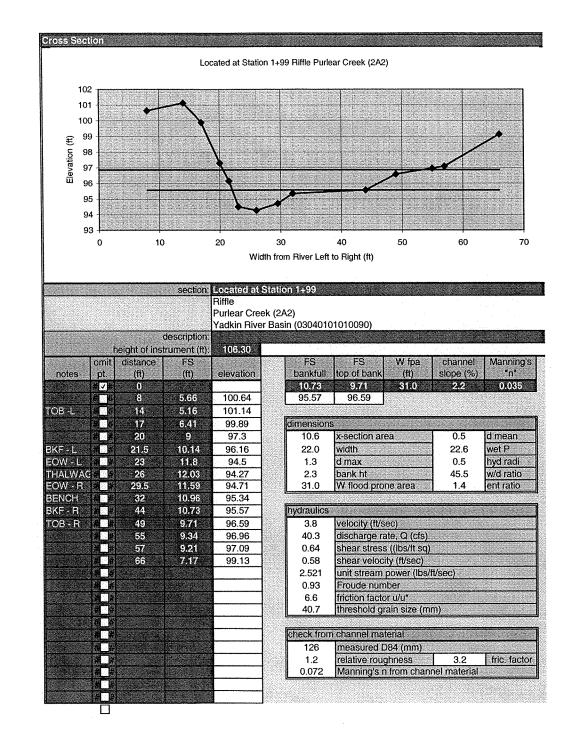
 Kimley-Horn and Associates, Inc.
 Project:
 Purlear Creek Restoration, Wilkes County @ Hayes Farm

 Date:
 Scale:
 Project No.
 Figure:

 10/10/02
 1 inch = 750 feet
 011795011
 3



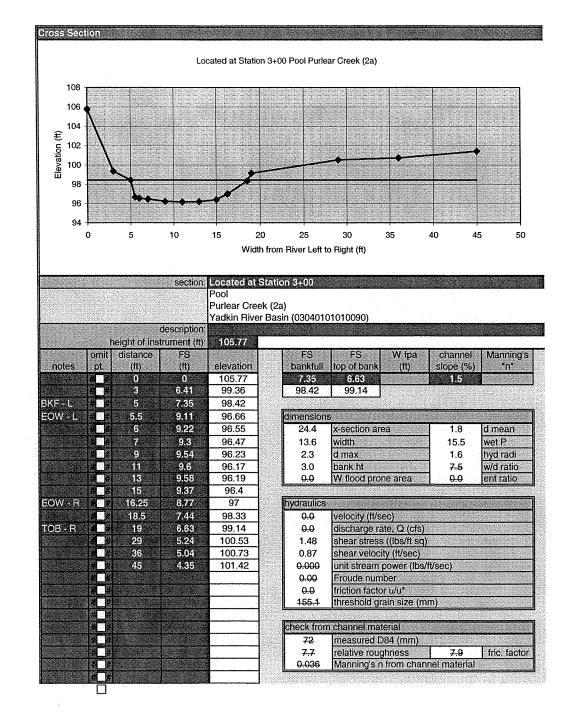
Appendices

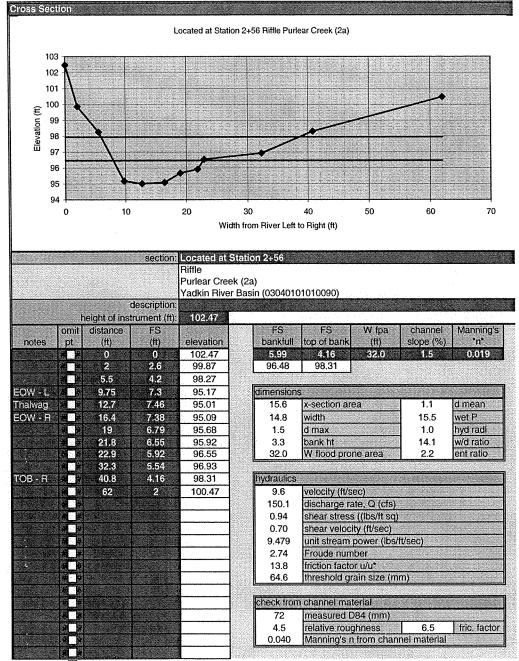

Appendix A: On-Site Geomorphic Assessment

Reference Reach				ainis			
	m: Purlear Creek (2A2)		~~)				
Constants and a second s	68,623	Yadkin River Basin (03040101010090)					
Location Wilkes County (Hayes Farm)							
Latitu	8383						
Longitu							
	ty: Wilkes						
같이 있는 것은 것은 것은 것을 가지 않는 것을 수 있었다. 것은 것을 것을 했다.	Ite: 6-24 to 6-26-2002	rn 00					
Observe	ers: CWE, NW, CD, ARK, P	IR, 55					
Channel Ty	no: 53						
Drainage Area (sq							
Dimension							
		typical	min	max			
Riffle:	x-area bankfull	10.6					
	width bankfull	22.0					
	hydraulic radius	0.5					
	max depth	1.3					
	bank ht	4.9					
	width flood prone area	31.0					
Deels	mean depth	0.48	- 91.44 A				
Pool:	x-area pool	21.2					
	width pool	21.4					
	hydraulic radius	0.9					
	max depth pool bank ht	5.9					
Pun:		- 3/3					
Run:	x-area run						
	width run hydraulic radius						
	max depth run						
	bank ht						
Glide:							
Glide.	x-area glide						
	width glide						
Dimensionless Rat	max depth glide	typical	min	max			
Sanonononioso Mai	Width/Depth Ratio	45.7	THE	ITICA			
	Entrenchment Ratio	1.4					
	Riffle Max Depth Ratio	2.7	- <u></u>				
	Pool Area Ratio	2.0					
	Pool Width Ratio	1.0					
	Pool Max Depth Ratio	3.9					
	Bank Height Ratio	3.8					
	Run Area Ratio						
	Run Width Ratio						
	Run Max Depth Ratio						
	Glide Area Ratio						
	Glide Width Ratio						
	Glide Max Depth Ratio						
Hydraulics:		riffle	pool	run			
	channel slope (%)						
	discharge rate, Q (cfs)						
	velocity (ft/sec)	- 0.0	0.0				
shear stre	ess @ max depth (lbs/ft sq)						
	shear stress (lbs/ft sq)						
	shear velocity (ft/sec)						
	stream power (lbs/sec)	***					
hr	nit stream power (lbs/ft/sec)						
	relative roughness	1.2	2.4				
threshold or	friction factor u/u* ain size @ max depth (mm)						

dar an eige strange. Frankrige strange

Appendix A

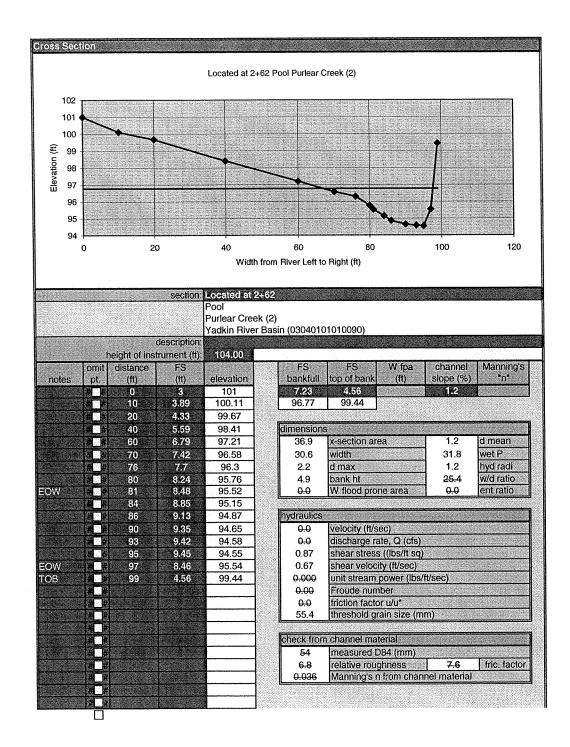

Pirler Creek (24) Pirler Creek (24) Valdkin River Basin (300401010030) Valdkin River Basin (30040100000) Valdkin River Basin (30040100000) Valdkin River Basin (300401000		0.00	Typical Init Itasy 107.08 8.6 0.25 99.4 90.4	2.2 58 60.07.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 11.33 107.08 11.33 107.08 11.33 107.08 11.33 107.08 11.43 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08 107.08	11 0.5 2.4 Fifthe 1:0 1:0 1:1 </th
Relation of Ration Stream: Perhant Creek (2A2 Watersteel: Yaddin Bruer Basin Location: Wilkes County (Hay Longlude:	bet we amplitu radia radia strasmy strasm valley valley	Sinuosity Sinuosity Amplitude Tatio Meander Length Ratio Straight Length Tatio Frotta	bankful wdth (1 bankful wdth (1 pool-pool spacing (1) riffel ength (1) pool iength (1) glafe ength (1)	(c) social entruction (c) social film (c) social film (c) social for (c) social value (c) social value (c) social value (c) social value (c) social value (c) social control	Run contraction Run length Silite Length Silite Store Run Siore Run Siore Galde Store Pool Spacing

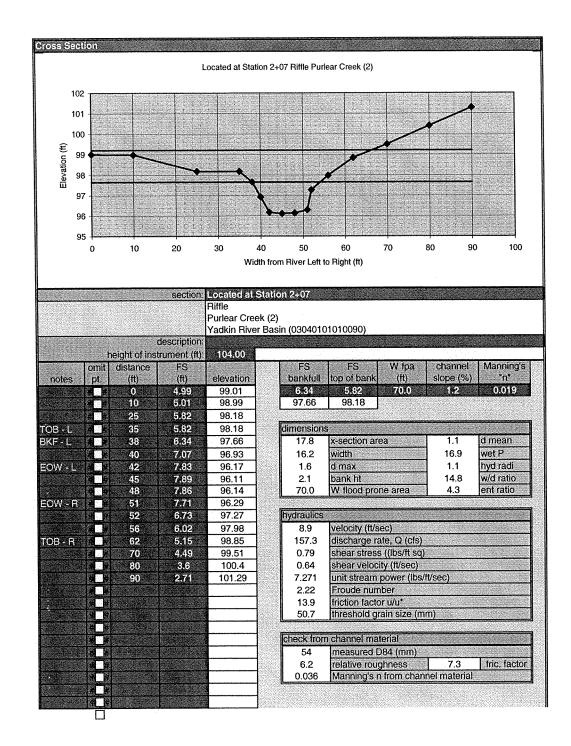

dan semer Bernanda Gernalden (berdelen de Gernalden de Gernalden (berdelen de Gernalden de Ger

Antonyaman argueranda Arana Arana Arana Arana Purfear Creek Readh 242 - Profile

Reference Reach				linis
	am: Purlear Creek (2a)			
Watersh	hed: Yadkin River Basin (030	401010100	90)	
	ion: Wilkes County (Hayes F	arm)		
Latitu	03.500			
Longitu				
and a second	inty Wilkes			
	ate: 6-24 to 6-26-2002 ers: CWE, NW, CD, ARK, P	22 97		
Observ	els, ICWE, NW, CD, ANN, F	in, 33		
Channel T	ype: C4			
Drainage Area (so	1.5 1.5			
Dimension		typical	min	max
Riffle:	x-area bankfull	15.6		
	width bankfull	14.8		
	hydraulic radius	1.0		
	max depth	1.5		
	bank ht			
	width flood prone area	32.0		
Pool:	mean depth x-area pool	1.05 24.4		
r 001.	width pool	24.4 13.6		
	hydraulic radius	1.6		
	max depth pool	2.3		
	bank ht	3		
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run			
	bank ht			
Glide:	x-area glide			
	width glide	-		
Dimensionless Ra	max depth glide	typical	min	max
Differioración	Width/Depth Ratio	14.0	11011	THEX
	Entrenchment Ratio	2.2		
	Riffle Max Depth Ratio	1.4		
	Pool Area Ratio	1.6		
	Pool Width Ratio	0.9		
	Pool Max Depth Ratio	2.2		
	Bank Height Ratio	2.0		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
Hudeaulies	Glide Max Depth Ratio			
Hydraulics:	channel slope (%)	riffle 1.500	pool	run
		1.000		
	discharge rete O /ofe)		and the second se	
	discharge rate, Q (cfs)	0.0	0.0	[
shearst	velocity (ft/sec)	0.0	0.0	
shear st	velocity (ft/sec) ress @ max depth (lbs/ft sq)	1.404	2.153	
shear st	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	1.404 0.936	2.153 1.498	
shear st	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec)	1.404	2.153	
	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	1.404 0.936	2.153 1.498	
	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec)	1.404 0.936 0.695 	2.153 1.498 0.879 	
	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) unit stream power (lbs/ft/sec)	1.404 0.936 0.695 	2.153 1.498 0.879 	
	velocity (ft/sec) ress @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) unit stream power (lbs/ft/sec) relative roughness	1.404 0.936 0.695 4.5	2.153 1.498 0.879 7.6	

Second second



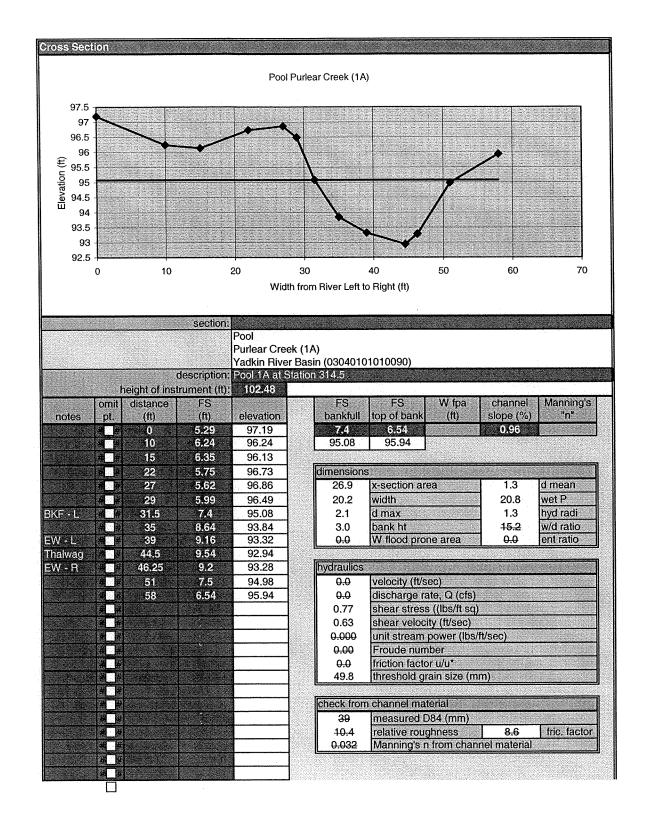

de la composition de la compos

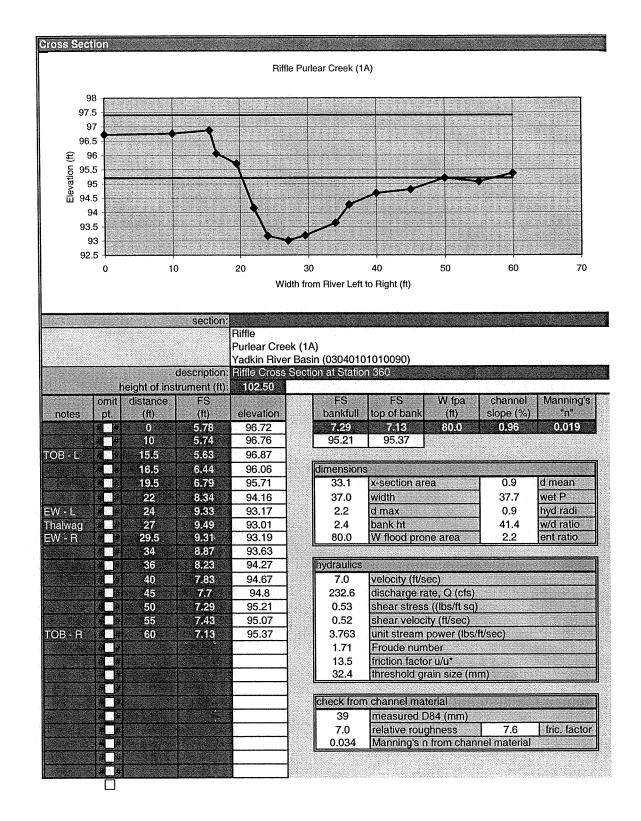
FIND FIND FILS 1	Location: Wilkes County (Hayes Farm) Latitudai:		Purlear Creek	Purlear Creek (2a) Yadkin River Basin (03040101010090) Wilkes County (Hayes Farm)	Wilkes County (Hayes Farm)		
	Lattude: Longtude Country: Wilkes						
The state of the s	County: Wilkes	07					
Martine (Dict. Art. Tr.). Martine (Dict. Art. Tr.). Martine (Dict. Art. Tr.). <th></th> <th></th> <th>•</th> <th></th> <th></th> <th>•</th> <th></th>			•			•	
Multiple Multiple <t< th=""><th>Date: 6-24 to 6-26-2002 Observers: ICWE, NW, CD, ARK, PTR, SS</th><th>s s</th><th>•</th><th></th><th></th><th></th><th></th></t<>	Date: 6-24 to 6-26-2002 Observers: ICWE, NW, CD, ARK, PTR, SS	s s	•				
	Oharmei Type: C4			•			
	ge Area (eq mir 1)			/	······		
minimum minimum <t< th=""><th>typical min</th><th></th><th></th><th>/</th><th>$\left(\begin{array}{c} \\ \\ \end{array} \right)$</th><th>·····</th><th></th></t<>	typical min			/	$\left(\begin{array}{c} \\ \\ \end{array} \right)$	·····	
		91			/	1	
En angle (diversion En angle (diversion En angle (diversion En angle (diversion En angle (diversion	Delit Miditi (tr) amplitude (tt)	00			Å		
Transmission Transmission<	radius (t), the second se	8					
stram limit and multi	ato arige (regress) and				250	300 350	
Mander Structure fails Mander Structure fails<	stream length construction of the second				5W	X T08	(F A x-section
Monder Nutri Ria, Ampliane Ratio Image Monder Nutri Ria, Ampliane Ratio Image Monder Nutri Ria, Ampliane Ratio Monder Ria, Ria, Ria, Ria, Ria, Ampliane Ratio Monder Ria,							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1 100 Elevation				ŀ
Wateriel Teach	1	cross	H FS	depth FS FS	FS AZ	ELEV ELEV	TOB LEV
Stratistic failubility	1	section	100.48 IP	water bis:		95.74 97.36	3
Allel Peol 52 0.55 0.55 0.55 0.55 0.55 0.52 0.44.5 Dendratin wattin (n) 4.4 2.3 10.48 7.35 0.55 1.5 0.23 94.4.5 Dendratin wattin (n) 4.4 2.3 10.48 1.55 0.45 0.55 0.45 0.55 0.44 0.27 94.4.5 Dendratin wattin (n) 4.4 2.3 1.45 0.28 0.45 0.28 0.45 0.4.5				0.0		95.57	
Typelation Typelation Total 6/23 5/24 2/24 <td></td> <td></td> <td></td> <td>0.55</td> <td></td> <td>94.45</td> <td></td>				0.55		94.45	
	Appoal min	•	un	0.23		94.43	
	14.8			22 S		+-	-
44 36 100	27 E			2 S C		92.38	
15 0.043 6.47 10.43 6.47 115 0143 6.47 0143 6.47 0143 6.47 0143 6.47 0143 6.47 0143 6.47 0143 6.47 0143 6.47 0143 0144 0143 0143 0144 0143 0144 0143 0144 0144 0144 0144 0144 0144 0144 0144 0144 0144 0144 0144 0144 0144	90 82 82			80		Н	
15 24 967 8.56 0.65 91.31 91.33 91.36 91.31 91.36 91.31 91.36 <td></td> <td></td> <td>100.48 67.7</td> <td></td> <td></td> <td></td> <td></td>			100.48 67.7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			99.67	-			
06 0 11 Begin Ritie 230 967 8.03 0.35 9159 91544 9154 9154	1.5 1.5 0.5			+		-	
2.2 Mail Partie Static 0.13 5.69 90.14 90.14 2.2 Mail Partie 256 99.67 10.3 1.2 7.56 90.14 0.0 Mail Partie 256 99.67 10.3 1.2 7.56 90.14 0.0 Mail Partie 200 2007 10.3 1.2 7.56 90.17 0.1 2.6 34.7 0.12 7.56 90.27 90.17 0.1 2.6 3.4 0.18 90.67 10.3 1.2 7.56 90.47 3.0 2.6 3.4 0.95 90.67 10.3 1.2 7.56 90.47 3.0 2.6 3.4 0.95 90.67 90.67 90.47 1.1 0.3 1.6 90.67 90.67 90.47 90.47 1.1 0.3 1.6 90.67 90.67 90.67 90.47 1.1 0.3 1.6 90.67 90.67 90.67	0.6 0		Cast.	0.35		91.94	
2.2 End and resident 2000 200	run stope (%)	Riffie	¢. (*	0,18		╋	
22 Imd Pool 300 915 10.3 14 905						00 57	
4.7 2.4 7.3 30 2.6 3.4 11 0.3 3.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 0.3 1.6 11 1.6 1.6 12 1.6 1.6 13.6 1.6 1.6 14.7 1.7 1.6 15.8 1.6 1.6 16.9 1.6 1.6 17 1.7 1.7 18.8 1.6 1.6 19.67 1.7 1.7 11 1.7 1.7 1.7 14.7 1.7 1.7 1.7		9 100 1		+		╉	
	47 1 24			+			
<td>3.0 2.6</td> <td></td> <td><u> 99.67</u></td> <td></td> <td></td> <td></td> <td></td>	3.0 2.6		<u> 99.67</u>				
	1		99.67				
	13	A DESCRIPTION OF A DESC	99.67 00.67				
	0.4 1.0		99.67				
	1		99.67				
	1		99.67				

leference Reach				Hinis
	Purlear Creek (2)		201	
	Yadkin River Basin (030		90)	
	Wilkes County (Hayes F	arm)		
Latitude Longitude				
	Wilkes			
	6-24 to 6-26-2002			
a da anticipa da constructiva de la construcción de la construcción de la construcción de la construcción de la	CWE, NW, CD, ARK, P	FR. SS		
	, , , , , , , , , , , , , , , , , ,	,		
Channel Type	C4			
Drainage Area (sq mi)	1.71			
Dimension				
2/11	and the second se	typical	min	max
Riffle:	x-area bankfull	17.8 16.2		
	width bankfull hydraulic radius	1.1		
	max depth	1.6		
	bank ht	2.4		
	width flood prone area	70.0		
	mean depth	1.10		
Pool:	x-area pool	37.7		
	width pool	30.8		
	hydraulic radius	1.2		
	max depth pool	2.2		
	bank ht	4.9		
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run bank ht			
Glide:	x-area glide			4
Gliue.	width glide			
	max depth glide			
Dimensionless Ratio		typical	min	max
Darriononormocos ridino	Width/Depth Ratio	14.7		
	Entrenchment Ratio	4.3	1000	
	Riffle Max Depth Ratio	1.5		
	Pool Area Ratio	2.1		
	Pool Width Ratio	1.9	سنب	·
	Pool Max Depth Ratio	2.0		
	Bank Height Ratio	1.5		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
	Glide Max Depth Ratio		pool	
Hudraulice				, iuit
Hydraulics:	channel slone (%)	riffle 1.300		
Hydraulics:	channel slope (%) discharge rate. Q (cfs)	1.300		
Hydraulics:	discharge rate, Q (cfs)	1.300 100.0		
	discharge rate, Q (cfs) velocity (ft/sec)	1.300	2.7 1.785	
	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq)	1.300 100.0 5.6 1.298	2.7	
	discharge rate, Q (cfs) velocity (ft/sec)	1.300 100.0 5.6 1.298 0.892	2.7 1.785 0.973	
	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	1.300 100.0 5.6 1.298	2.7 1.785	
shear stres	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec)	1.300 100.0 5.6 1.298 0.892 0.679	2.7 1.785 0.973 0.709	
shear stres	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec)	1.300 100.0 5.6 1.298 0.892 0.679 81.1	2.7 1.785 0.973 0.709 81.1	 81.1
shear stres	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) stream power (lbs/ft/sec) relative roughness friction factor u/u*	1.300 100.0 5.6 1.298 0.892 0.679 81.1 5.007	2.7 1.785 0.973 0.709 81.1 5.007	 81.1
shear stres unit	discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) stream power (lbs/ft/sec) relative roughness	1.300 100.0 5.6 1.298 0.892 0.679 81.1 5.007 6.2	2.7 1.785 0.973 0.709 81.1 5.007 6.9	 81.1 5.007

y source by a star

Turber Follow Purper Para Land (2) Yadki Farin (2004) (Have Farin (20	Channel Disarce (1)	Middle Run 33 106.33 6.2.3 0.0.3 6.2.3 0.0.3 6.2.3 0.0.3 6.0.3 <th6.0.3< th=""> 6.0.3 6.0.3 <</th6.0.3<>	
Stram Puriar Creek (2) Watershed, Packin Fuer Bash (03040101010090) Watershed, Yackin Fuer Bash (03040101010090) Luthude: Mikes County (Hayes Farm) Luthude: Mikes County	varianty length varianty length Maander Wuth Ratio Ampitude Ratio Maander Langth Ratio Straght Langth Ratio Fadica Ratio Fadica Ratio	Apilual min max bankfull wath (n) to the max bankfull wath (n) to the max pool-pool spacing (n) to the max min langh (n)	


Notation of the State of State


Purlear Creek Reach 2 - Profile

Purlear Creek Reach 1A - Cross Section

ale surgius of the first of gr	
	and the province
April 1: In action of the fit	
	and the second
educes have an inde	
Schements and the first sector of the first se	
Active entrology Share entrology	
$(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha$	
termination of the second	Appression of the second se
and a second second second	

eference Reach				- islinits of
	m: Purlear Creek (1A)	010101000	00	
	ed: Yadkin River Basin (0304		9U)	
Locatio	on: Wilkes County (Hayes Fa			
Longitu	nty: Wilkes			
	ite: 6-24 to 6-26-2002			
	ers: CWE, NW, CD, ARK, PT	B SS		
Observe		11,00		
Channel Ty	pe: C4 -> G4			
Drainage Area (sq	mi): 2.59			
imension		typical	min	max
liffle:	x-area bankfull	38.1	1101	max
	width bankfull	37.0		
	hydraulic radius	0.9		
	max depth	2.2		
	bank ht	3.9		
	width flood prone area	80.0	- 10 A.M.	
	mean depth	0.89		
ool:	x-area pool	26.9		
	width pool	20.2		
	hydraulic radius	1.3		
	max depth pool	1.3		
	bank ht	3		
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run			
	bank ht		200 - C	
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ra	tios:	typical	min	max
	Width/Depth Ratio	41.4		
	Entrenchment Ratio	2.2		
	Riffle Max Depth Ratio	2.5		
	Pool Area Ratio	0.8	·	
	Pool Width Ratio	0.5		
	Pool Max Depth Ratio	1.5		
	Bank Height Ratio	1.4		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
	Glide Max Depth Ratio			
Hydraulics:		riffle	pool	run
	channel slope (%)	0.960		
	discharge rate, Q (cfs)	141.8		
	velocity (ft/sec)	4.3	5.3	
shear str	ress @ max depth (lbs/ft sq)	1.318	0.779	
	shear stress (lbs/ft sq)	0.539	0.779	
	shear velocity (ft/sec)	0.527	0.634	
	stream power (lbs/sec)	84.9	84.9	84.9
u	nit stream power (lbs/ft/sec)	2.296	2.296	2.296
	relative roughness	7.0	10.4	
			1 00	1
	friction factor u/u*	8.1	8.3	
threshold g	friction factor u/u* rain size @ max depth (mm) threshold grain size (mm)	8.1 <u>124</u> 33.3	50 50.2	

ELEV --- A x-section ELEV Low Bank 98.92 98.39 96.97 96.9 97.79 ELEV 400 Low Bank

BKF ••••
 96.26
 96.34

 95.66
 95.81

 95.66
 95.81

 95.66
 95.81

 95.57
 95.83

 95.19
 95.34

 95.10
 95.34

 95.12
 95.35

 94.62
 95.36

 94.65
 94.76

 94.61
 94.76

 94.61
 94.76

 94.61
 94.76

 94.16
 94.76

 94.33
 94.34

 94.41
 94.42

 94.13
 94.34

 94.14
 96.27

 95.55
 96

 94.18
 94.31

 95.45
 95.55

 95.14
 95.55

 95.14
 95.55

 95.17
 95.54

 95.17
 95.55

 95.17
 96.21

 95.55
 96.21

 95.55
 96.21

 95.55
 96.21

 95.55
 96.21

 95.55
 96.21

 95.55 ELEV BKF . + ELEV waler sr 350 water srf X ELEV bed • ¢ AZ azimuth Purtear Creek (1A) Yadkin River Basin (03040101010090) Wilkes County (Hayes Farm) 300 SE 1 6.23 FS FS FS FS BMF Low Bank Low Bank 6.83 7.72 200 250 Channel Distance (ft) 2.93 88 Å 8 Å 8,35 8.62 8.41
 FS
 FS

 5836
 836

 836
 836

 836
 836

 836
 836

 836
 836

 836
 836

 836
 836

 836
 836

 836
 836

 836
 943

 943
 943

 943
 943

 943
 943

 943
 943

 943
 943

 943
 943

 943
 943

 944
 943

 945
 943

 945
 943

 946
 943

 947
 943

 948
 943

 948
 943

 947
 943

 948
 943

 948
 943

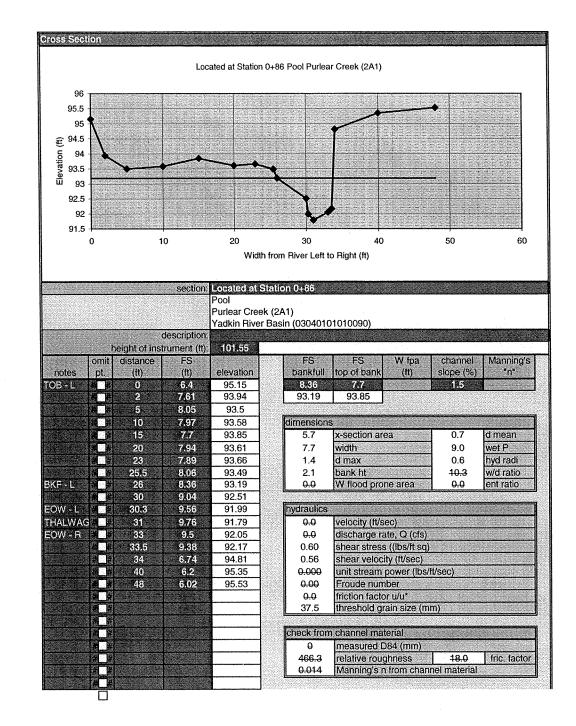
 948
 943

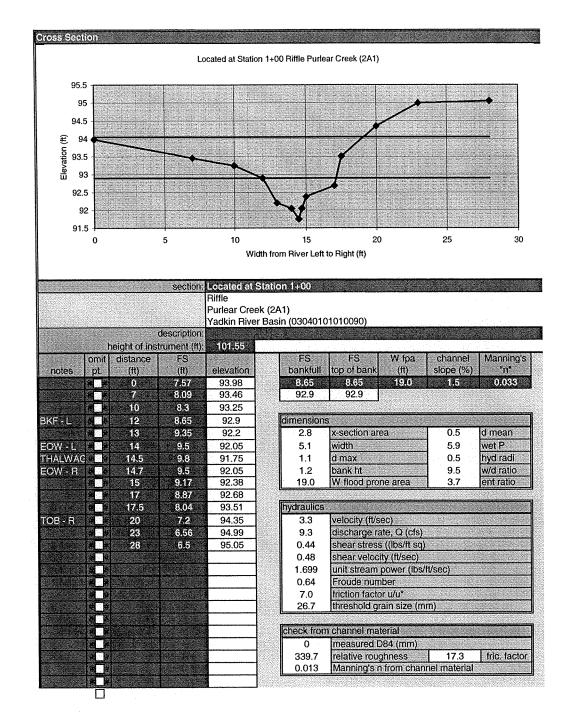
 949
 944

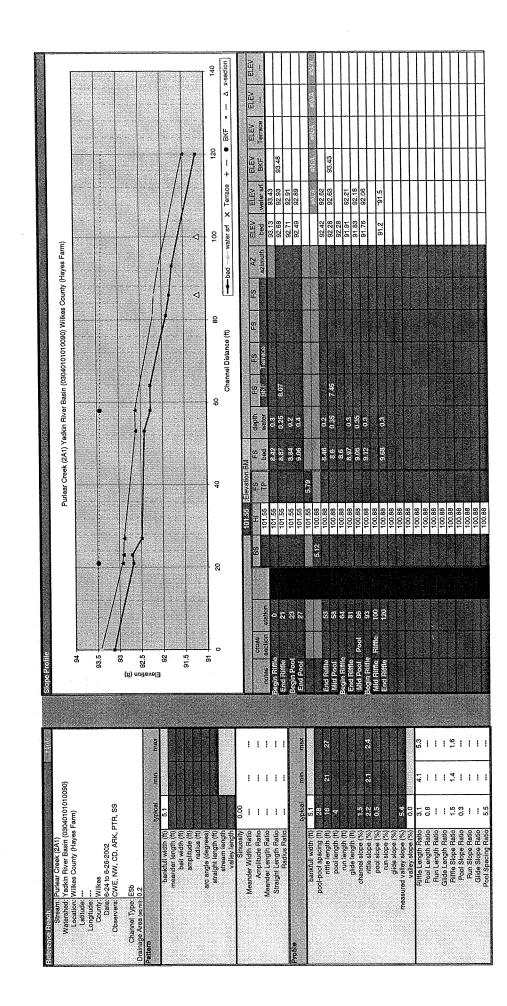
 944
 944

 945
 944

 945
 944

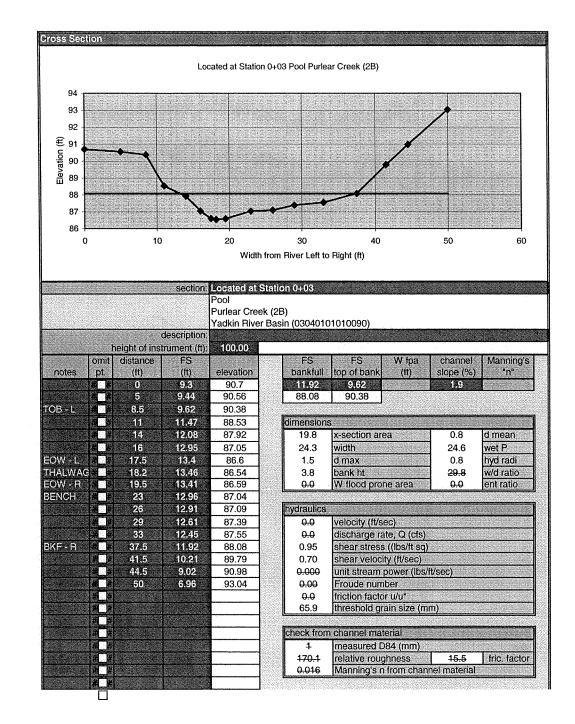

 945
 150 ł Si d 104.62 100.62 100.62 100.62 100.62 100.62 100.62 100.62 100.62 100.62 10 104.62 HI 104.62 8 BS 0 50 Begin Rittle Eddin Rittle Kud Pool Begin Rittle End Rittle Mid Pool Begin Rittle Rittle Pool Begin Rittle End Rittle Begin Rittle Rittl Cr089 34 63 62 98 96 95 8 66 97 5 Slope Pro (fi) noitevel3 4 0.32 TR BX max | | | | | <u>3</u> 2 8 1.2 0.15 8 2 8 uju mim 0.3 11111 banthull with (1) 37 pool-pool spacing (1) 37 pool-pool spacing (1) 37 pool length (1) 25,4 uun length (1) 25,4 uun length (1) 26,4 pool length facto uun length facto uun length facto Pool sope (s) 0,2 fun Length facto Pool Length facto Pool Sope facto Fun Length facto Pool Sope facto Curle Stope facto Curle Stope facto Pool Sope facto Pool Sope facto Curle Stope Facto Pool Spacing Acto typical 37 2005 2015 1.02 1.1 1 1 1 banduli width (t) maanduli width (t) bei width (t) amplitude (t) amplitude (t) arrangia (dagrees) atraight length (t) atream length (t) Arrangia (dagrees) atream length (t) Arrangia (dagrees) Sinugith artio Maander width Ratio Stragiat Length Ratio Stragiat Length Ratio Stragiat Length Ratio Channel Type: C4 -> G4 Drainage Area (or m): 2.59 Pattern Selerence Seach

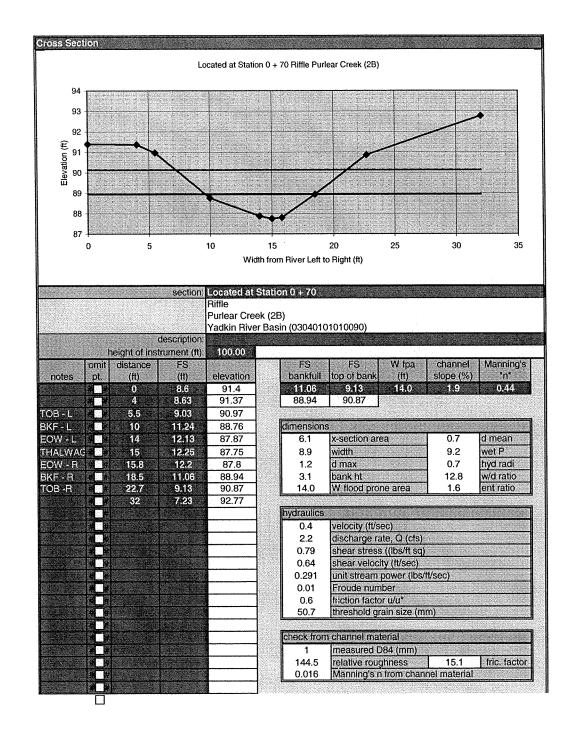

Appendix A


Purlear Creek Reach 1A - Profile

leference Reach				Hinis
	Purlear Creek (2A1)			
er en la classe na propositione de la companya de la classe	Yadkin River Basin (0304		90)	
Same in the transformed to and all the second	Wilkes County (Hayes Fa	arm)		
Latitude:				
Longitude:	4			
	Wilkes			
	6-24 to 6-26-2002			
Observers:	CWE, NW, CD, ARK, PT	rr, ss		
0 17	C.9.			
Channel Type:				
Drainage Area (sq mi): Dimension	10.2			
		typical	min	max
Riffle:	x-area bankfull	2.8		
	width bankfull	5.1		
	hydraulic radius	0.5		
	max depth	1.1		* <u></u>
	bank ht	2.6		
	width flood prone area	19.0		
	mean depth	0.55		
Pool:	x-area pool	5.7		
	width pool	7.7	<u> </u>	24. P.X
	hydraulic radius	0.6		
	max depth pool	1.4		
	bank ht	3.4	125 4 5	
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run			<u></u>
	bank ht		1998 - 1995 B	
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ration		typical	min	max
	Width/Depth Ratio	9.3		
	Entrenchment Ratio	3.7		
	Riffle Max Depth Ratio	2.0		
	Riffle Max Depth Ratio Pool Area Ratio	2.0		
	Pool Area Ratio	2.0		
	Pool Area Ratio Pool Width Ratio	2.0 1.5		
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio	2.0 1.5 2.6		
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio	2.0 1.5 2.6 2.4	 	
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio	2.0 1.5 2.6 2.4		
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio	2.0 1.5 2.6 2.4		
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Run Max Depth Ratio	2.0 1.5 2.6 2.4 		
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Run Max Depth Ratio Glide Area Ratio	2.0 1.5 2.6 2.4 		
Hydraulics:	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Run Max Depth Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio	2.0 1.5 2.6 2.4 		
Hydraulics:	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Run Max Depth Ratio Glide Area Ratio Glide Midth Ratio Glide Max Depth Ratio channel slope (%)	2.0 1.5 2.6 2.4 	 	
	Pool Area Batio Pool Width Batio Pool Max Depth Batio Bank Height Batio Run Area Batio Run Width Batio Glide Area Batio Glide Area Batio Glide Max Depth Batio Glide Max Depth Batio channel slope (%) discharge rate, Q (cfs)	2.0 1.5 2.6 2.4 	 	
	Pool Area Batio Pool Width Batio Pool Max Depth Batio Bank Height Batio Run Area Batio Run Width Batio Glide Area Batio Glide Width Batio Glide Max Depth Batio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec)	2.0 1.5 2.6 2.4 	 	
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq)	2.0 1.5 2.6 2.4 riffle	 pool	 run
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	2.0 1.5 2.6 2.4 riffle 0.0	 pool	 run
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq)	2.0 1.5 2.6 2.4 riffle 0.0	 pool 0.0 	 run
	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	2.0 1.5 2.6 2.4 riffle 0.0 	 pool 0.0 	 run
shear stress	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec)	2.0 1.5 2.6 2.4 riffle 0.0 	 pool 0.0 	 run
shear stress	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Width Ratio Glide Max Depth Ratio channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec)	2.0 1.5 2.6 2.4 niffle 0.0 	 pool 0.0 	
shear stress	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Width Ratio Glide Width Ratio Glide Max Depth Ratio Channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) s @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec)	2.0 1.5 2.6 2.4 riffle 0.0 	 pool 0.0 	
shear stress unit	Pool Area Ratio Pool Width Ratio Pool Max Depth Ratio Bank Height Ratio Run Area Ratio Run Width Ratio Glide Area Ratio Glide Area Ratio Glide Width Ratio Glide Width Ratio Glide Width Ratio Glide Max Depth Ratio channel slope (%) discharge rate, Q (cfs) velocity (ft/sec) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/ft/sec) relative roughness	2.0 1.5 2.6 2.4 riffle 0.0 343.7	 pool 0.0 463.4	 run

Alexandra (m. 1997) Alexandra (m. 1997) Alexandra (m. 1997)

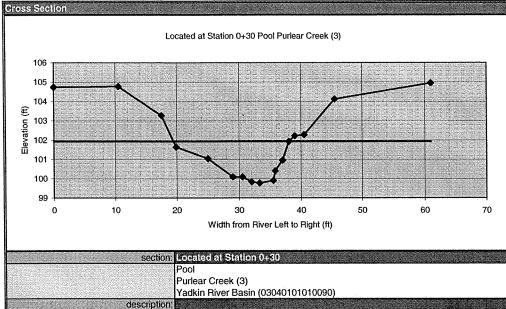

Appendix A



Purlear Creek Reach 2A1 - Profile

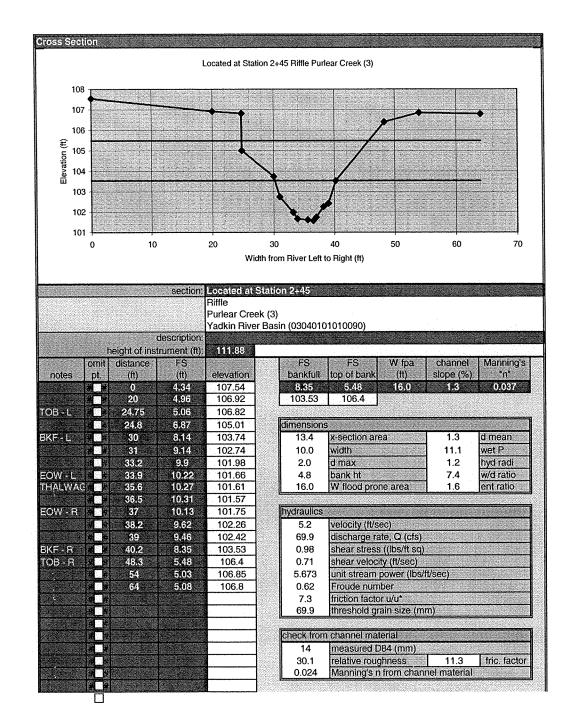
Reference Reach				Hints
Stream:	Purlear Creek (2B)			
	Yadkin River Basin (030		90)	
	Wilkes County (Hayes F	arm)		
Latitude:				
Longitude:				
County:				
and the second	6-24 to 6-26-2002	TD CC		
Observers.	CWE, NW, CD, ARK, P	in, 33		
Channel Type:	BSc			
Drainage Area (sq mi):				
Dimension				
		typical	min	max
Riffle:	x-area bankfull	6.1		
	width bankfull	8.9		
	hydraulic radius	0.7		-
	max depth	1.2		-
	bank ht	3.1		
	width flood prone area mean depth	14.0 0.69		
Pool:	x-area pool	19.8		
r 001.	x-area pool width pool	24.3		
	hydraulic radius	0.8		
	max depth pool	1.5		
	bank ht	3.8		
Run:	x-area run			5.05 ··· ·
	width run			
	hydraulic radius			
	max depth run			
	bank ht			
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ratios		typical	min	max
	Width/Depth Ratio	13.0		
	Entrenchment Ratio	1.6		
	Riffle Max Depth Ratio	1.8		
	Pool Area Ratio	3.2		
	Pool Width Ratio	2.7		
	Pool Max Depth Ratio	2.2		
	Bank Height Ratio	2.6		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
Hydraulics:	Glide Max Depth Ratio	riffle	nool	run
riyuraulius.	channel slope (%)	nue	puoi	Tun
	discharge rate, Q (cfs)			
	velocity (ft/sec)	0.0	0.0	
shear etrees	@ max depth (lbs/ft sq)	0.0		
Shical Siless	shear stress (lbs/ft sq)			
	shear velocity (fl/sec)			
	stream power (lbs/sec)			
unit	stream power (lbs/ft/sec)			
Unit	relative roughness	143.1	170.2	
	friction factor u/u*			
threshold grain	size @ max depth (mm)			
			1	
	reshold grain size (mm)		1	

and have a set of the second



ris				84 100 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140	PS Elevation BM BS HI FS FS FS FS FS FS EEV ELEV FS FS	No. 55 551 014 59 87.6 </th <th>10 943 0.00 7.82 86.4 96 9.5 0.03 7.82 86.4 96 9.5 0.03 81.4 86.4 96 9.5 0.03 81.4 86.4 96 9.5 0.03 81.1 81.7 96 10.25 0.11 8.23 86.7 96 10.13 0.11 9.23 8.46 85.59 96 10.73 0.11 9.23 8.46 85.59 96 10.74 0.12 9.12 8.55 85.59 96 10.74 0.12 9.2 8.65 85.50 85.52 96 9.6 9.6 9.6 9.6 9.6 9.5 9.5 96 96 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6</th> <th></th>	10 943 0.00 7.82 86.4 96 9.5 0.03 7.82 86.4 96 9.5 0.03 81.4 86.4 96 9.5 0.03 81.4 86.4 96 9.5 0.03 81.1 81.7 96 10.25 0.11 8.23 86.7 96 10.13 0.11 9.23 8.46 85.59 96 10.73 0.11 9.23 8.46 85.59 96 10.74 0.12 9.12 8.55 85.59 96 10.74 0.12 9.2 8.65 85.50 85.52 96 9.6 9.6 9.6 9.6 9.6 9.5 9.5 96 96 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	
farentes Reach Stream Purtear Creek (22) Watersheel Vackin filver Basin (0304010100300)	Location Wilkes County (Hayes Farm) Lattude Longitude County: Wilkes	User 6-54 to 5-20-2002 Observers: CWE, NW, CD, ARK, PTR, SS Channel Type: BSc Drainage Area (or mr) 0.08 Pattern	6:8	arc ange (degrees) straight length (ang) (1) straight length valies) valies Stram (angh	Meander Wich Ratio Amplitude Fatio Meander Length Ratio Straight Length Ratio Straight Length Ratio	Protite Typical min bankfull width (1) 8.9 h poolopool sagettig (1) 7.1 h pool langth (1) 7.1 h	run length (1) dida length (1) channel slope (2) run slope (2) run slope (2) gida slope (2) yida slope (2) valies slope (2) valies slope (3) valies slope (3)	Riffie Langth Raulo

Appendix A


Purdear Creak

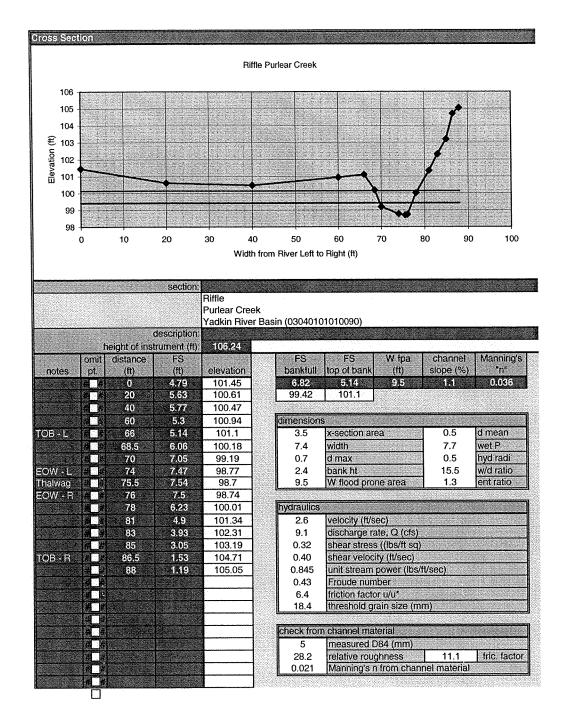
Reference Reach				Filialis
	Purlear Creek (3)			
	Yadkin River Basin (030	401010100	90)	
Location:	Wilkes County (Hayes F	arm)		
Latitude:				
Longitude:				
County:				
	6-24 to 6-26-2002			
Observers.	CWE, NW, CD, ARK, P	in, 55		
Channel Type:	G4			
Drainage Area (sq mi):				
Dimension		hining	min	
Riffle:	x-area bankfull	typical 13:4	min	max
une.	width bankfull	10.0		
	hydraulic radius	1.2		
	max depth	2.0		
	bank ht	4.8		
	width flood prone area	16.0		
	mean depth	1.34		
Pool:	x-area pool	24.1		
	width pool	18.5		
	hydraulic radius	1.2 2.2		
	max depth pool bank ht	4.4		
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run			
	bank ht			
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ratios		typical	min	max
	Width/Depth Ratio	7.5		
	Entrenchment Ratio	1.6		
	Riffle Max Depth Ratio Pool Area Ratio	1.5		
	Pool Width Ratio	1.0 1.9		
	Pool Max Depth Ratio	1.9		
	Bank Height Ratio	2.2		L
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
	Glide Max Depth Ratio			
Hydraulics:		riffle	pool	run
	channel slope (%)	1.300		
	discharge rate, Q (cfs)			
		0 0		
abaaa abaaa	velocity (ft/sec)	0.0	0.0	
shear stress	velocity (ft/sec) @ max depth (lbs/ft sq)	1.622	1.785	
shear stress	velocity (ft/sec) @ max depth (lbs/ft sq) shear stress (lbs/ft sq)	1.622 0.973	1.785 0.973	
shear stress	velocity (ft/sec) @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec)	1.622	1.785	
	velocity (ft/sec) @ max depth (lbs//t sq) shear stress (lbs//t sq) shear velocity (ft/sec) stream power (lbs/sec)	1.622 0.973 0.709	1.785 0.973 0.709 	
	velocity (ft/sec) @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) stream power (lbs/ft/sec)	1.622 0.973 0.709 	1.785 0.973 0.709 	
	velocity (ft/sec) @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) stream power (lbs/ft/sec) relative roughness	1.622 0.973 0.709 30.0	1.785 0.973 0.709 29.1	
unit t	velocity (ft/sec) @ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) stream power (lbs/ft/sec)	1.622 0.973 0.709 	1.785 0.973 0.709 	

Anna an Innia.

			description:							
		leight of inst		110.27	-					-
	omit	distance	FS			FS	FS	W fpa	channel	Manning's
notes	pt.	(ft)	(ft)	elevation		pankfull	top of bank	(ft)	slope (%)	*n*
		0	5.53	104.74		8.34	6.15		1.3	
OB - L		10.5	5.49	104.78	L	101.93	104.12			
		17.5	7	103.27						
KF-L		19.9	8.62	101.65	dì	mension	3			
		25	9.23	101.04		24.1	x-section ar	ea	1.3	d mean
		29	10.18	100.09		18.5	width		19.6	wet P
OW - L		30.5	10.18	100.09		2.2	d max		1.2	hyd radi
		32	10.44	99.83		4.4	bank ht		14.2	w/d ratio
HALWAG		33.3	10.5	99.77		0.0	W flood pro	ne area	0.0	ent ratio
OW - R		35.5	10.36	99.91						
		35.8	9.86	100.41	hy	draulics				
		37	9.31	100.96		0.0	velocity (ft/s	ec)		
KF·R		38	8.34	101.93		0.0	discharge ra	ate, Q (cfs)		
		39	8.05	102.22		1.00	shear stress	s ((ibs/ft sq)		
		40.5	7,99	102.28		0.72	shear veloc	ity (ft/sec)		
OB - R		45.5	6.15	104.12		0.000	unit stream	power (lbs/l	t/sec)	
		61	5.32	104.95		0.00	Froude num	nber		
						0.0	friction facto	or u/u*		
					L	72.3	threshold g	ain size (m	m)	
			- 10 A							unghan pényahanan s
					ct		n channel ma			
				L		14	measured [1
	# _#			· · ·		29.1	relative rou		11.2	fric. factor
						0.024	Manning's r	n from chani	nel material	
					L	0.024	Manning's r	i from chani	nel material	

Purlear Creek Reach 3 - Profile

te este participation de la seconda


and a discovered to		
signing the strategy	$(1,1) \in \{1,\dots,n\} := \{1,\dots,n\}$	
2014/04/2011 04:02/04		
and a first state of the second		

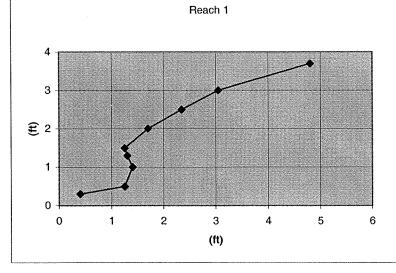
Bééverése Reach	S	Slope Profile												
Stream Putlear Creek (3) Watershed: Yadkin River Basin (03040101010090)					Purles	ır Creek (3) Yad	kin River Basin (0	33040101010009(Puriear Creek (3) Yadkin River Basin (03040101010090) Wilkes County (Hayes Farm)	(Hayes Farm)				
Location Wilkes County (Hayes Farm) Latitude:		107												
Longitude County: [Wilkes		106					+	-						
Date: 6-24 to 6-26-2002 Observers: CWE, NW, CD, ARK, PTR, SS		105					•			+				
Channel Tuna (34		(ii) 5 ×	×											
Drainage Area (w. m): 0.72	÷	noit S							-					
Pattern Apical min max	×	Evel: 5	1					X						
banktull width (ft) 10		ہ ق	\$			}								
belt width (t)		100										1		
radius (f) and for the former of the former		66	V	-										
arc angle (degrees) straight length (f)		4 o		20	2	100	150		200	250	02	300		350
stream length access valley length access		,					ర	annel Distance	Channel Distance	atersni X BKF - R	-R + TOB-L	-L • BKF-L	L - TOB-R	A x-section
0.00					a cloure	Clovetion RM								
Meander wordt frauo Amplitude Ratio	<u></u>		S 1 9993	BS	와 또 포	FS	depth FS	FS	FS FS	AZ hinite	ELEV ELEV	V ELEV	ELEV BKF - B	ELEV ELEV TOB.L TOB.R
:		noles section	8			-		7.28			1		103.43	
Straigm Lengin hauto Radius Ratio		iin Bille	د ت		110.71	818	ţ.			-				
	1	Mid Riffle	20		110.71	8.94 5.94	017 7.38	8 7.25			101.77 101.94 101.54 101.68	34 103.33 38	103.46	
	т		n		110./1	57 G	+	4			+	14 102.5	102.5	
Dankfull Width (T) 10 Dankfull Midth (T)	ú	ed Bun	69 47		110.71	9.44	0.12 7.86	8.09		-		39 102.85	102.62	
poorpool spacing (r)		Mid Roof	50		110.71	9.63					-	31		+
pool langth (ft)			60		110.71	8	0.18			- -	101 12 101 26 101 12 101 26	36		
run length (fi) is a second second second	10.2	Beqin Run	20		110.01	「シシシシン」					4			

_		10	ĩ		7 1			-										T	_1	-1	-1	-1		-1	-	-1		-	-1	Т	Т	
	A X-section				r, 971														104.49				103.89				_					
	TOB - R A			ELEV	1-201														105.96				104.13				104.93					
	ŀ			ELEV	ықт - н	103.43		103.46		102.5	102.62								102.79		102.14		102.28				101.43					
	 BKF-L 		1.000	ELEV	BKF . L	103.2		103.33		102.5	102.85								102.62		102.25		102.33				101.45					
	TOB-L			ELEV	waler srt	102.25	101.96	101.94	101.68	101.44	101.39	101.31	101.3	101.26	101.31	101.24	101.04	100.92	101	100.86	100.76	100.59		100.44	100.38	100.25	100.03		99.93	99.73	99.55	99.36
	BKF-R +				bed V		┢─		101.54	101.29	+	101.03		┢	1-	+-	-	┝	100.91	100.79	⊢	-			100.24	100.18	99.83		99.89	99.57	99.49	99.22
	×			AZ	1	Ľ				,	-	-			-	Ē				-		F										
	water srf																		6.22				6.82									
	Channel Distance mambed water srf			FS FS	361 10						ŀ								4.75 6				6.68 6.68				5.78					
	stance			FS F				7.25			80.00								7.92 4		8.57		8.43 6.				9.28 5					
	hannel Dis			-	8		ŀ		ł	Į.	÷	-				ĺ.		÷			÷											
2	o			h FS	-		ł	7 38	ł	4	282		F						888		2.46	ł	8.33				92.6				15	
			-	depth			ł					Ľ	ł		÷			-	÷		4				-				-			9 0.14
			on BM	FS		-		10 5	0.17			59 G		040	20	980	6	9 9	0	80	101	10	10.2	10.3	101	(S) () ()			10.8		11.27	11.49
3			Elevation BM	SH	4 1					1																				-		
			110.71	Ŧ	11071	110.71	110.71	110 71	11071	10.14	110.71	110 71	110.71		140.71	140.74	110 71	110.1	110.71	110.71	110.74	110 71	110.71	110.71	110.71	110.71	410.74	11071	110.71	110.71	110.71	110.71
20				BS																												
ō			1 (1 () () () () () () () () ()																													
					station	- HANKING	<u>ب</u> د	2 8	2 6	3 :	ŋ ų	2 5	3 5	3 f	2 9	9 8	105	g u	176	3 #	201		: <u>:</u>	ų,	510	200	1000	206	or ac	275	285	300
ə				CT063	operting 1	1 comode			Sinto.	annu																Ì		0.66				
					nalae	10109					i i				agin hun																	
			<u>.</u>	1		k	Ó	i ·				dia			9				•	5 1									a	5		
		Γ					}	I		THAX			Ī										I						1			1
ALL AND AL			,			ł	1			THE I													L					;	;		. ;	
	Т	0																														
	th di	sity 0.00						long		è.	(R) 10		(II)		(H)		(e)	(o/)	(0)	(0/.)												
	stream length valley length	Sinuosity	Mandar Middh Datio	Amolihida Ratio		Meander Lengin haud	Straight Length Hatto	nauus nauo			banktull width (ft	pool-pool spacing (II	(m) (m) (m)	n) nignei lood	run length (II)	glide length (ff	cnannel slope (%)	rittle slope (%)	(%) adois iood	(%) adols uni	glide slope. (%)	measured Valley slope (%)	Diffic Londia Datio	Lengur Dr	Provi Lengui Fauo Dim Longth Datio	reuñn u		e ciope ri	Col Siope Hallo	Run Slope Hallo Glide Slope Batio	Pool Snacing Batio	- E-100040
	•	00033227000	Manual.	iviadi Am		Meander	straight				Dan	vod-lood	H	ā,		б ,	cnan.	E ()	a .'		а .	esured var	01410				apilo	Ē	2 c		Pind S lond	
		K				Ś						S										Ê	3					ġč		88	S.	ľ

Appendix A

leference Reach				Finis
	Purlear Creek			
	Yadkin River Basin (030		90)	
	Wilkes County (Hayes F	arm)		
Latitude	23			
Longitude				
	Wilkes 6-24 to 6-26-2002			
and the second state of the second	CWE, NW, CD, ARK, P	TR SS		
Cuservers	NOTE, MIN, OU, ANA, F	, 00		
Channel Type	F4			
Drainage Area (sq mi				
Dimension				
Riffle;	x-area bankfull	typical	min	max
anno.	width bankfull		1	
	hydraulic radius			
	max depth			
	bank ht			
	width flood prone area			
	mean depth	0.00		
Pool:	x-area pool			
	width pool			
	hydraulic radius			
	max depth pool			
	bank ht			
Run:	x-area run			
	width run			
	hydraulic radius			
	max depth run			
	bank ht			
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ratio		typical	min	max
	Width/Depth Ratio			
	Entrenchment Ratio			
	Riffle Max Depth Ratio			
	Pool Area Ratio			
	Pool Width Ratio			
	Pool Max Depth Ratio			
	Bank Height Ratio	***		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
Understand	Glide Max Depth Ratio			
Hydraulics:	channel alone (IV)	riffle	pool	run
	channel slope (%)			
	discharge rate, Q (cfs)			1
الد يحمينان	velocity (ft/sec)	***		
snear stres	s @ max depth (lbs/ft sq)			
	shear stress (lbs/ft sq)			
	shear velocity (ft/sec)			
	stream power (lbs/sec)			
unil	stream power (lbs/ft/sec)			
	relative roughness			
	friction factor u/u*			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n size @ max depth (mm)		I	I
	threshold grain size (mm)			

Spe Prolide Purlear Creek Yackin River Basin (030401010050) Wilkes County (Hayes Farm) 103.6 103.6 104.6 105 105 105 105 105 105 105 105 105 105		50 100 150 200 Channel Distance (f) bad water sf X TOB +< 110,76 Fewation BM FS FS FS FS KZ 110,75 TP edpth FS FS FS KZ ELEV ELEV 110,76 TP 9.4. 0.00 845. 6.9.9 101.32 101.32 101.32 101.32 102.32 110,76 TD 9.4. 0.06 845.5 6.9.9 101.32 101.32 102.32 102.1	25 110.78 3.26 0.11 6.13 7.13 100.87 101.16 103.61 110.7 7.05 9.86 0.14 9.17 7.34 100.67 101.17 10.67 101.11 101.26 102.81 103.41 103.7	
Annus Artrich Stream Stream Watersheat Vadkin Fliver Basin (goddor)o1010090) Lacation: Wilkes County (Hayes Farm) Lacation: Wilkes County (Hayes Farm) Latitude	Channel Lype 1-4 Dealinge Area (earn) (0.15 Fattern type 1-4 banktull width (11) maander length (11) maand	arraight length () stream length valley length () Namder Barlo Meander With Rato Meander Barlo Meander Barlo Streinh Length Rato 	typical r typical r tr tr tr tr	Fulle Length Ratio Pool Length Ratio Run Stope Ratio

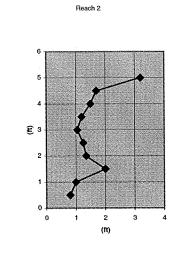

Purlear Creek Reach 4 - Profile

Appendix B: Bank Erosion Hazard Index

Purlear Creek Reach 1 - Bank Erosion Hazard Index

Reach 1

	BEHI Variables	Measurement	Hazard Rating
A	Highest Bank	4.3	
В	Max Bankfull	2.1	
С	A/B	2.047619048	7.9
D	Root Depth	1	
E	Study Bankheight	3.7	
F	D/E	0.27027027	6.2
G	Root Density	25	6.5
Н	G*F	6.756756757	
1	Bank Angle	40	3
J	Bank Height Protection	0	
К	Surface Protection	60	3.5
	Hazard Subtotal		27.1
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		37.1
	BEHI Description		High

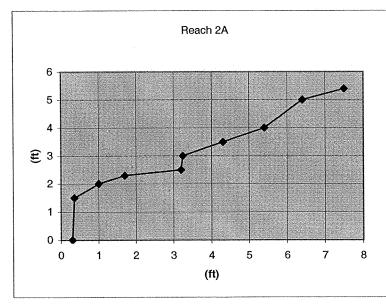

And a production of the second

Vertical
0.3
0.5
1
1.3
2
2.5
3
3.7

Purlear Creek Reach 2 - Bank Erosion Hazard Index

Reach 2

	BEHI Variables	Measurement	Hazard Rating
A	Highest Bank	6.5	
В	Max Bankfull	2	
С	A/B	3.25	10
D	Root Depth	1	
E	Study Bankheight	5	
F	D/E	0.2	7
E F G	Root Density	7	8.5
Н	G*F	1.4	
1	Bank Angle	61	4
J	Bank Height Protection	60	
К	Surface Protection	25	6.5
	Hazard Subtotal		36
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	.0
	BEHI Rating		46
	BEHI Description		Very High- Extreme


Rendered Annald 2 Rendered Annald C

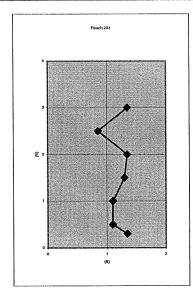
Horizontal	Vertical
0.8	0.5
1	1
2	1.5
1.35	2 2.5 3
1.25	2.5
1.05	3
1.2	3.5
1.5	4
1.7	4.5 5
3.2	5

Purlear Creek Reach 2A - Bank Erosion Hazard Index

Reach 2A

	BEHI Variables	Measurement	Hazard Rating
A	Highest Bank	5.4	
В	Max Bankfull	2.3	
С	A/B	2.347826087	8.5
D	Root Depth	2.1	
E	Study Bankheight	2.5	
F	D/E	0.84	2.1
G	Root Density	50	3.8
Н	G*F	42	
I	Bank Angle	39	3
J	Bank Height Protection	6	
к	Surface Protection	75	1.5
	Hazard Subtotal		18.9
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		28.9
	BEHI Description		Moderate

and the second states of the s

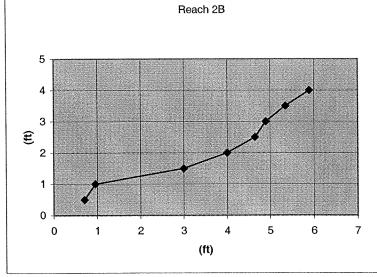

Set is mainly a set of the set of

Horizontal	Vertical
0.3	0
0.35	1.5
1	2
1.7	2.3
3.2	2.3 2.5
3.25	3
4.3	3.5
5.4	4
6.4	5
7.5	5.4

Purlear Creek Reach 2A1 - Bank Erosion Hazard Index

Reach 2A1

	BEHI Variables	Measurement	Hazard Rating
Α	Highest Bank	3.3	
B	Max Bankfull	1.6	
С	A/B	2.0625	8
D	Root Depth	1	
E	Study Bankheight	2.9	
F	D/E	0.344827586	5.8
G	Root Density	10	8.5
н	G*F	3.448275862	
1	Bank Angle	90	7.9
J	Bank Height Protection	0.5	
к	Surface Protection	10	9
	Hazard Subtotal		39.2
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		49.2
	BEHI Description		Extreme

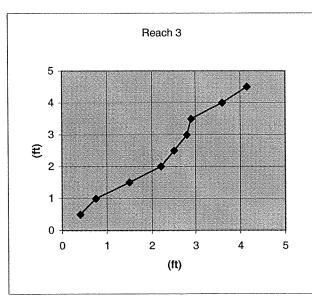


LAUEINE
Vertical
0.3
0.5
1
1.5 2 2.5 3
2
2.5
3

Purlear Creek Reach 2B - Bank Erosion Hazard Index

Reach 2B

	BEHI Variables	Measurement	Hazard Rating
A	Highest Bank		4
В	Max Bankfull	0.	В
С	A/B		5 10
	Root Depth		1
D E F	Study Bankheight		4
F	D/E	0.2	5 6.5
G	Root Density	3	0 5.9
Н	G*F	7.	5
1	Bank Angle	3	4 2.5
J	Bank Height Protection		1
к	Surface Protection	3	0 5.9
	Hazard Subtotal		30.8
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		40.8
	BEHI Description		High- Very High

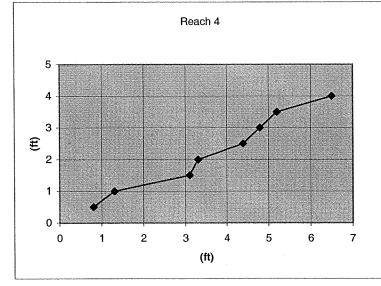

Aller of the second

Horizontal	Vertical
0.7	0.5
0.95	1
3	1.5
4	2 2.5 3 3.5
4.65	2.5
4.9	3
5.35	3.5
5.9	4

Purlear Creek Reach 3 - Bank Erosion Hazard Index

Reach 3

	BEHI Variables	Measurement	Hazard Rating
A .	Highest Bank	5.5	
В	Max Bankfull	1.9	
С	A/B	2.894736842	10
D	Root Depth	1	
D E F	Study Bankheight	4.5	
F	D/E	0.222222222	6.5
G	Root Density	25	6.2
Н	G*F	5.555555556	
	Bank Angle	47	3
J	Bank Height Protection	0.5	
К	Surface Protection	25	6.5
	Hazard Subtotal		32.2
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		42.2
	BEHI Description		Very High


strandor and states an

Horizontal	Vertical
0.4	0.5
0.75	1
1.5	1.5
2.2	2 2.5 3
2.5	2.5
2.8	3
2.9	3.5
3.6	
4.15	4.5

Purlear Creek Reach 4 - Bank Erosion Hazard Index

Reach 4

	BEHI Variables	Measurement	Hazard Rating
A	Highest Bank	5	
В	Max Bankfull	1.45	
С	A/B	3.448275862	10
D	Root Depth	1	
E	Study Bankheight	4.9	
F	D/E	0.204081633	7
G	Root Density	20	7
Н	G*F	4.081632653	
1	Bank Angle	32	2.5
J	Bank Height Protection	1	
К	Surface Protection	60	3.5
	Hazard Subtotal		30
	Bank Material Adjustment	Sand	10
	Stratification Adjustment	No Stratification	0
	BEHI Rating		40
	BEHI Description		High-Very High

Second board

Horizontal	Vertical
0.8	0.5
1.3	
3.1	1.5
3.3	
4.4	2.5
4.8	
5.2	
6.5	4
<u> </u>	

Appendix C: Materials

Reference Reach						Hints
	0.0100	010101				
Stream:	Stream: Purlear Creek (2A2)	ek (ZAZ)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	040101010	(060)		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:						
Longitude: County: Wilkes	Wilkes					
Date:	Date: 6-24 to 6-26-2002	5-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, F	PTR, SS			
Channel Type: F3	F3					
Drainage Area (sq mi): 1.3	1.3					
Channel Materials						
	total	riffle	pood	run	glide	bar sample
D16	0.254	0.198	0.314	0.000	0.000	1
D35	4.23	0.84	23.71	0.00	0.00	
D50	23.5	6.6	75.9	0.0	0.0	!
D84	126	86	147	0	0	1
D95	190	191	189	0	0	:
Largest of Bar Sample						
% Silt/Clay	3%	%9	%0	1		ł
% Sand	28%	32%	23%	1	-	;
% Gravel	27%	34%	19%	•		
% Cobble	43%	28%	58%	1		1
% Boulder	%0	%0	%0	1	:	
% Bedrock	%0	%0	%0	-		

nie station in the second

Anno Anglana Anglan Anno Anglana Anglan

> Purlear Creek Reach 2A2 - Materials

										1 1 1 1 1		4 1 1 1 1			1 1 1 4 4 1	1 1 1 1 1 1			11111					10000				\mathbf{F}	å	%0 %
									ц.,				-			-	-	-	-	-		-	Ì	1000	1				boulder	%0
																							Ĭ	10		- Pool		te type	cobble	43%
									7	5	11	11	11		•	1	111			1 1 1	•	•		100				Percent by substrate type	gravel	27%
								reek (2A2)	• -		1 1 1 1									1 1 1 1						Percent Item		Percent	sand	28%
				(060			- - -	Pebble Count, Purlear Creek (2A2)			1 1 1 1 1			L 1 1 1 1 1 1 1 1 1 1	<u></u>	\ \ \	5			1 1 1 1 1				10		٠			silt/clay	3%
				Yadkin River Basin (03040101010090)	Farm)			ebble Coun			1 1			1 1 1									•	•	-				D95	190
		INT,	ek (2A2)	er Basin (03	<u>Wilkes County (Hayes Farm)</u>													- 1			4	•						an (mm)	D84	106
		Peppie Count	Purlear Creek (2A2)	Yadkin Rive	Wilkes Cou					111							11111							, ,		e (mm)		Size percent less than (mm)	D50	20 12
						Note:								-							1		• •	- 6	0.01	Particle Size (mm)		Size per	D35	00 1
								10001	%001	%06	2000	80%	%02	2000	%ng	20% Januari			н 30%		ວາອ		70V	ò	> 				D16	0.01
		Glide:		#	# #	#	#	# #	#	#	# #	#	#	# #	# #	#	#	#	# #	#	# #	# : # : T	# # 	#	# #	#	#	*	1	T
	Percent Ru	Percent Gli	Total #	3.0	4.9	7.8	10.8	3.0	1.0	3.9	4.0	3.0	4.0	2.0	1.9	4.0	0.0	3.9	14.7	12.6	9.7	5.9	0.0	0.0	0.0	0.0	0.0	0.0	100	001
			(mm)	0.062	0.13	0.25	0.5	1	2	4	6	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Weinhted Count:	
	50	50	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	ø	11	16	22	32	45	64					362	512	1024	2048		Weinh	
Meighter Levie Court	Percent Riffle:	Percent Pool:	Material II	Γ	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock		

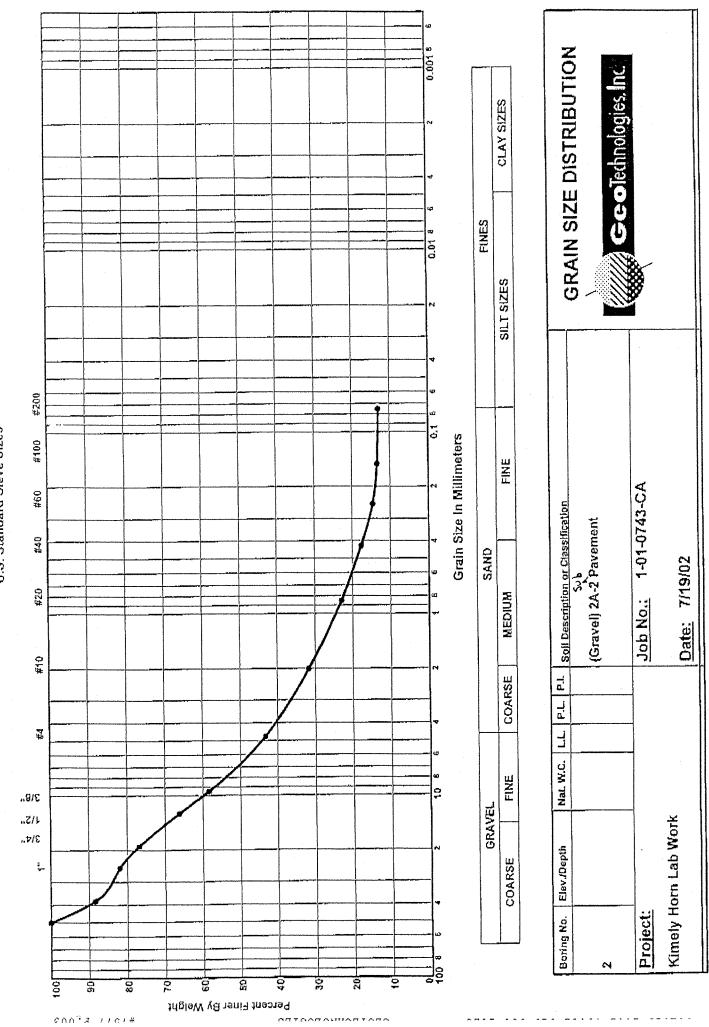
en a presenta destana des

Purlear Creek Reach 2A2 - Materials

bedrock Ganad %0 Percent Item boulder %0 ٠ DOOL -E-Cumulative Percent Percent by substrate type 28% 34% ۲ 40F ۲ Riffle Pebble Count, Purlear Creek (2A2) sand 32% 9 silt/clay • %9 Purlear Creek (2A2) Yadkin River Basin (03040101010090) ٠ 4 D95 191 Particle Size (mm) Wilkes County (Hayes Farm) ۲ Riffle Pebble Count, •
 Size percent less than (mm)

 D35
 D50
 D84

 0.84
 6.6
 86
 ē 0.1 Note: 0.01 %06 Finer Than 50 % Percent 30 % 20% 10% %0 100% 80% 0.198 D16 <u>*****</u>** # # # # # # # # # -±÷ # Ŧ di-* # # # # # # # # # ± # # Count 50 ო ო 4 e c e e ო 2 2 ŝ თ otal Particle Count: 2048 4096 1024 0.062 0.13 0.25 256 362 128 512 0.5 9 82 22 90 2 ശ ω Size Range (mm) 0.062 0.25 512 1024 2048 ⁹⁰ 180 256 362 0.5 9 45 22 64 2 œ 4 ω very large cobble small boulder fine gravel fine sand medium cobble large cobble bedrock coarse sand very coarse sand very fine gravel fine gravel medium gravel medium gravel coarse gravel very coarse gravel small boulder medium boulder large boulder very fine sand medium sand coarse gravel very coarse gravel small cobble very large boulder **Riffle Pebble Count** Material silt/clay


Purtear Creek Reach 2A2 - Materials

bedrock Percent Item %0 boulder ٠ %0 cobble 58% Percent by substrate type ۲ ٠ gravel 19% Purlear Creek (2A2) ۲ sand 23% ۲ ٠ ¢ 6 silt/clay %0 Pool Pebble Count, Pool Pebble Count, Purlear Creek (2A2) Yadkin River Basin (03040101010090) Wilkes County (Hayes Farm) • D95 189 Particle Size (mm) D84 than (mm) 147 Size percent less D50 75.9 0.1 1-1 Note: D35 23.71 0.01 80% Sercent Finer Than Bercent Finer Than 10% 0.314 %06 20% 100% %0 D16 # # # # # # * * * # # # * * * * * Ŧ Ŧ Ŧ Ŧ # # # # # # # 52 10 0 0 ო œ ი ო 0 2 đ 0 2 0 N S **Fotal Particle Count:** 1024 2048 4096 0.13 0.062 128 256 362 512 0.5 ω 9 85 4 64 6 ω ŝ 4 (mm) Range 512 1024 2048 0.062 0.25 ¹²⁸ 180 256 362 0.5 9 22 32 45 64 0 ŝ 4 ø ω 176 very large cobble small boulder small boulder medium sand large cobble medium boulder large boulder very fine sand fine gravel fine gravel medium gravel medium gravel coarse gravel very coarse gravel very coarse gravel medium cobble very large boulder bedrock fine sand very coarse sand coarse gravel small cobble very fine gravel Pool Pebble Count Material silt/clay

Purlear Creek Reach 2A2 - Materials

												111111				1 1 1 1						10000	Percent Item		ł	er be	0% 0%
									1 1 1 1 1	1111		1 1 1 1				1 1 1 1	1 1 1 1 1 1					1000	٠			cobble bou	3% 0
									1 1 1	· · ·	1 1 1	1			111		111					100			Percent by substrate type	gravel c	16%
						Creek (2A2)						1 1 1			101111						•		†		Percent	sand	28%
		10090)				Pebble Count, Purlear Creek (2A2)											111111					10				sitt/clay	53%
		Yadkin River Basin (03040101010090)	ss Farm)		•	Pebble Cot				 			-	1 111							•	-	ze (mm)			D95	19
ount,	Purlear Creek (2A2)	ver Basin (Wilkes County (Hayes Farm)							I							1 1 1		•		-		Particle Size (mm)		han (mm)	D84	σ
Pebble Count	Purlear C	Yadkin Ri	Wilkes Co						11111								114 1 1			-	•	0.1			Size percent less than (mm)	D50	A/N#
				Note:														-			-	0.01			Size pe	D35	A/N#
		#	#	#	#	#	%00L	%06 #	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%/no ##	# 10%	28 4⊥ ₩	8 Jer	# 11 50%	# 90%		# F 30%	# 20%	#	# ⁰¹	%0	#	#	#	#	D16	#N/A
[*	#	*	#	#	*		*	#	#	#	#	#	#	#	#	#	*	#	*	#	#	#	**	# 	1
	Count	52	3	7	14	3	-	4	с С	2	3	-	2	0	-	0	+	2									00
	le (mm)	0.062	0.13	0.25	0.5	-	5	4	9	8	11	16	22	32	45	64	60	128	180	256	362	512	1024	2048	4096		Total Darticla Count-
	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	5	4	9	80	11	16	22	32		64	6	128	180	256	362		1024	2048		лĽ
Pebble Count	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	bedrock	

ala a da cara d Cara da c

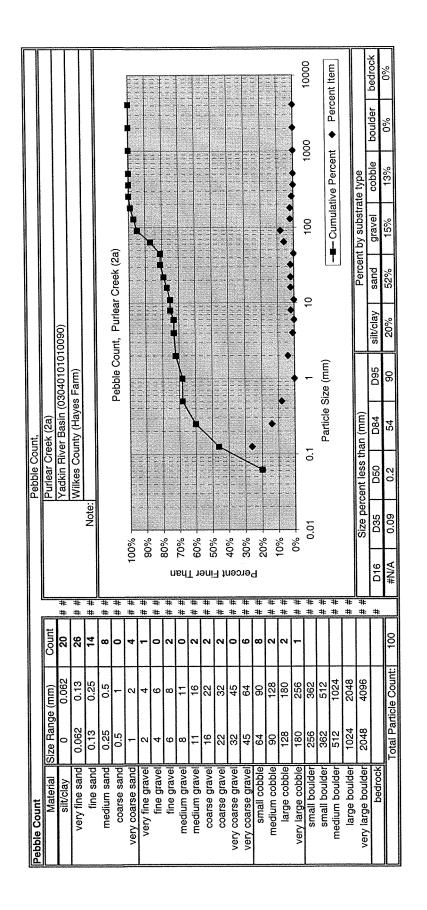
U.S. Standard Sieve Sizes

Reference Reach						Hints
Stream:	Stream: Purlear Creek (2a)	ek (2a)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	3040101010	(060)		
Location:	Wilkes Cou	Location: Wilkes County (Hayes Farm)	Farm)			
Latitude:	1					
Longitude: County: Wilkes	 Wilkes					
Date:	Date: 6-24 to 6-26-2002	5-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, F	PTR, SS			
Channel Type:	04					
Drainage Area (sq mi): 11.5	1.5					
Channel Materials						
	total	riffle	pood	unı.	glide	bar sample
D16	0.076	0.129	W/N#	0.000	0.000	
D35	0.31	1.09	0.13	0.00	0.00	1
DEO	1.7	8.0	0.2	0.0	0.0	
D84	72	77	7	0	0	:
D95	109	107	117	0	0	1
Largest of Bar Sample						
% Silt/Clay	14%	6%	33%	1	1	;
% Sand	37%	34%	43%			1
% Gravel	30%	37%	13%	-	-	:
% Cobble	19%	23%	10%	1	1	-
% Boulder	%0	%0	%0			-
% Bedrock	%0	%0	%0	1	ł	

gan in the part of the of data and the state of the data and the state of the state of the data and the state of the s

	Doroont Bund	Derroant Brund
ide:	Percent num Percent Glide:	
	Total #	Size Range (mm) Total #
# #	14.0 # #	62 14.0 #
# #		# #
# # Note:		# #
# #	#	#
	# #	# #
# # J00%	# #	# #
++ %06 # #	#	2:0 # #
	##	##
# #		# # 0.9
# #	# #	# #
,		4.0 # #
	ι	ا # #
# # hat 50% +	1990 # #	4.0 # #
Τı	1 # #	1 4.0 # # L
	əu # #	əu # #
	1 # #	
uə	uə	uə # # 0.6
	6LC # #	erc
	d # #	d # # 0.0
/oC # #		# #
• • • • • • • • • • • • • • • • • • •	5) # #
10 ⁰ # #	>	> # #
# # Particle Size (mm)		# #
# #	0.0 # #	#
# Size percent less than (mm)	0.0 # Size	# 0.0
D16 D35	016	D16
	0.076	100

and a discrete contract.


Purlear Creek Reach 2A - Materials

							T I I I I			1111					11111						10000		Percent Item		┟	ă	0%0
							-	-	-	1 1	+ -	-					-	-		•	0		•			boulder	%0
															11222		1 1 6 3 1 1				1000		ive Percent		te type	cobble	23%
					-	a)			<u> </u>		1		1		-						100		- Cumulative Percent		Percent by substrate type	gravel	37%
					0	ar Creek (2				<u>}</u>				1 1 1		1 1	1.1.1					L			Percen	sand	34%
		(060)			-	Riffle Pebble Count, Purlear Creek (2a)					11111						1 1 1 1 1	111111		• • • • • •	C F	2				silt/clay	6%
		Yadkin River Basin (03040101010090)	Farm)		•	fie Pebble C					1 1 1		1 1	1 1 1		1		-			•	_	Particle Size (mm)			D95	107
	sek (2a)	er Basin (0:	Wilkes County (Hayes Farm)			ДЦ Ц								1 1 1 1									Particle S		ian (mm)	D84	77
	Purlear Creek (2a)	Yadkin Riv	Wilkes Cot							1 2 1 3		11111	1 1 1 3 1	1 1 1 1 1		11111			•		Č				Size percent less than (mm	D50	8.0
			•	Note:						-										+	. 2	0.01			Size per	D35	1.09
							· %00L	· %06	80%		20%	رT 60%			60%	ero 30%	d	50%	10%	700	>					D16	0.129
		# #	# #	#	#	# #	#	# #	#	# #	# #	# #	# #	# #	#	# #	# #	# #	# #	#	# #	#	*	# #	# #	# 	T
	Count	4	7	4	2	4	4	-	2	4	+	4	2	4	4	4	თ	7									20
	s (mm)	0.062	0.13	0.25	0.5	+	2	4	9	8	11	16	22	32	45	64	60	128	180	256	362	512	1024	2048	4096		Total Particle Count:
	Size Range (mm)	0	0.062	0.13	0.25	0.5	۲	5	4	9	ø		16	22	32	45	64	06			256	362	512		2048		Total Pai
HILLE FEDDIE COUL	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	bedrock	

							1 1 1 1		1 1 1 1 1		: 11: 1											ent		┢	ă	0%0
						 			1						-						000	- Cumulative rercent			boulder	%0
								1111 1 1 1	1 1 1 1 1			1111 2 1									2 -			ite type	cobble	10%
				-	a) 								1				111		•		100	1		Percent by substrate type	gravel	13%
				- (ar Creek (2												1 1							Percent	sand	43%
	060)				Pool Pebble Count, Purlear Creek (2a)												1 1 1 1		•		10				silt/clay	33%
	Yadkin River Basin (03040101010090)	Farm)			ol Pebble C			-			1					-	-	-	•			ze (mm)			D95	117
sek (2a)	er Basin (0	<u>Wilkes County (Hayes Farm)</u>			<u>Р</u>							-						•				Particle Size (mm)		ian (mm)	D84	7
Purlear Creek (2a)	Yadkin Riv	Wilkes Cot											31			1 1 1 1	1111	1 1 1			0.1			Size percent less than (mm)	D50	0.2
			Note:															-			10			Size per	D35	0.13
						100%	- %06	- %U8			Г 1 60% -	əu			919	Ы	20% -	10% -	-	~ %0	0.01	-			D16	#N/A
	# #	# #	#	#	# #	# #	#	# #	#	# #	# #	# #	#			#	# #		# #		# #	#	# #	# #	#	Г
Count	10	0	2	4	2	0	1	0	2	1							2	+								30
(mm)	0.062	0.13	0.25	0.5	Ŧ	2	4	6	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096		Total Particle Count:
Size Range (mm	0	0.062	0.13	0.25	0.5	+	2	4	9	8	11	16	22	32	45	64	06	128			362	512		2048		Total Parl
Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	bedrock	

opperen en product product production described production and producting and an opperation and an o

Purlear Creek Reach 2A - Materials

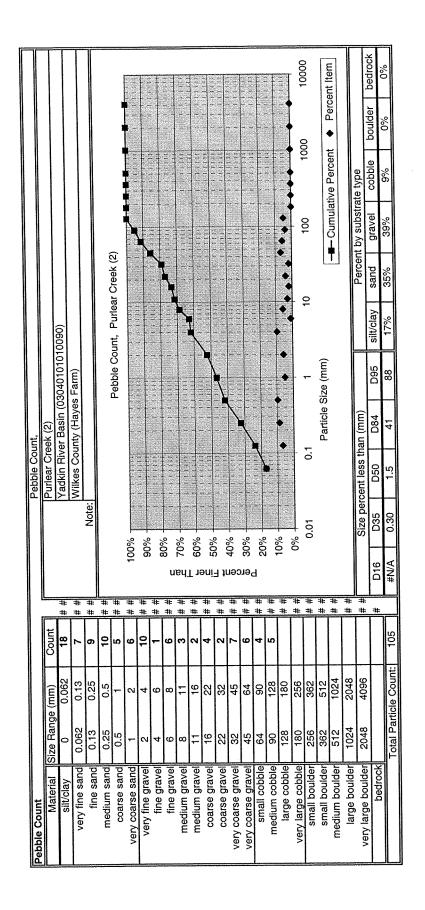
Reach 2A - Materials

Purlear Creek

						N D
Reference Reach						
Stream: I	Stream: Purlear Creek (2)	ek (2)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Riv∈	er Basin (03	040101010	(060		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:	1					
Longitude: County: [Wilkes	 Wilkes					
Date:	Date: 6-24 to 6-26-2002	5-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, F	oTR, SS			
Channel Type:	C4					
Drainage Area (sq mi): [1.71	1.71					
Channel Materials						
	total	riffle	pool	run	glide	bar sample
D16	#N/A	#N/A	0.170	0.000	0.000	1
D35	0.64	6.26	0.28	0.00	0.00	1
D50	5.1	9.4	0.5	0.0	0.0	1
D84	54	70	+	0	0	:
D95	119	196	13	0	0	:
Largest of Bar Sample						
% Silt/Clay	17%	22%	3%		1	:
% Sand	28%	1%	%06	1		:
% Gravel	42%	58%	6%			;
% Cobble	13%	18%	%0	****		1
% Boulder	%0	%0	%0		;	;
% Bedrock	%0	%0	%0	***	ļ	

Purlear Creek Reach 2 - Materials

							 .								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			LETE STATES AND A DESCRIPTION			1111 1 1 1 1 1 1 1			1000 10000	C		Ç		cobbie boulder bear
									Ì		1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +				-			-			-	•		100			the state of the s		gravel co
							(U)	Pebble Count, Purlear Creek (2)	<u>\</u>					and the second sec			1 1 1					•				Percent Item -		Percent	sand
			1000	020			Ċ	unt, Funea							~		11/11	<u>_</u>	X					10		٠			silt/clay
				1010101090	Farm)			Pebble Co	4		1	<u> </u>		-				<u> </u>		A A			•	Ŧ	-				D95
	1	INI,	ek (2)	Yadkin River Basin (0304010101090)	<u>Wilkes County (Hayes Farm)</u>										~			<u>/</u>		No.	· · · · · · · · · · · · · · · · · · ·	•						ian (mm)	D84
		Pebble Count,	Purlear Creek (2)	Yadkin Riv	Wilkes Cot				11111									11111			Ì			 	-	e (mm)		Size percent less than (mm)	D50
						Note:																		100	- 0.	Particle Size (mm)		Size per	D35
									%00L	%06		80%	# 70%)o 00 #				əui	# FF 30%		erc		#U%U	*	, #	#	#		D16
	Percent Run:	t Glide:	#	#	#	# #	#	<u>*</u>	#	# # 	#	#	#	# # 	#	#	#	#	#	*	*	* :	<u>*</u> T	*	*	*	*	#	Ī
	Percel	Percent Glid	Total #	16.6	0.0	8.7	5.8	10.6	2.9	3.7	2.8	10.1	3.7	2.8	4.7	2.8 2.8	5.5	6.4	6.4	1.8	0.0	4.6	0.0	0.0	0.0	0.0	0.0	0.0	100
			e (mm)	0.062	0.13	0.25	0.5	-	2	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Wainhtad Count
	20	30	Size Range (mm	0	0.062	0.13	0.25	0.5		5	4	9	8	11	16	22	32						256	362	512	1024	2048		
Weighten repute count	Percent Riffle:	Percent Pool:	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	


red program a series pro-108, augusta program a series

											111					11.1				T	10000	Derrant Itam			1 hedrock	/00/	
							1 1 1	1 1		1 1 1								1.1	1		0				houlder		0.0
							1111			11111		1111111							1 1 1 2 1 1		1000		Ne recen	10 11 10	cobble 1		18%
										11				1	111	1	11.1	1.11	•	•	100			the second s	referring subsidie type	gravel	58%
					0/ 10000	ar Oreek (2	· · · ·				1							1 1 1	•			[Ţ	C	Leicell	sand	1%
	100	190)			C	Hiffle Peppie Count, Puriear Creek (2)			1 I I I I	1 1 1 1 1				4	11/711		1111	•			10				4 / 11	silt/clay	22%
		Yadkin River Basin (03040101010090)	rarm)		(1 1					•	٣		ize (mm)			D95	196
1. (0)	ek (z)	er Basin (03	Wilkes County (Hayes Farm)			ЦН Н																	Particle Size (mm)		an (mm)	D84	70
	Purlear Creek (2)	Yadkin Rive	Wilkes Cou								11111		1 1 1 1 1	11111		1111					, t				Size percent less than (mm	D50	9.4
	<u> </u>	<u></u> 1:		Note:					-		1		A DISCONTRACTOR						-		. 2	0.01			Size per	D35	6.26
						,0001	- %00L	%06	80%			r T 80%		ч Б С		90% 90%		%NZ	10%	%U		5				D16	#N/A
		# #	# #	# #	# #	#	# #	# #	#	# #	#	#	# #	# #	# #	# #			# #	# #		# #	# #	#	# #	#	
	Count	17				-		4	e	=	4	2	4	e	9	2	7	2		ъ							76
	(mm)	0.062	0.13	0.25	0.5	1	2	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Total Particle Count:
	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	ω	1	16	22	32	45	64	06	128		256	362	512		2048		I.
Riffle Pebble Count	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	

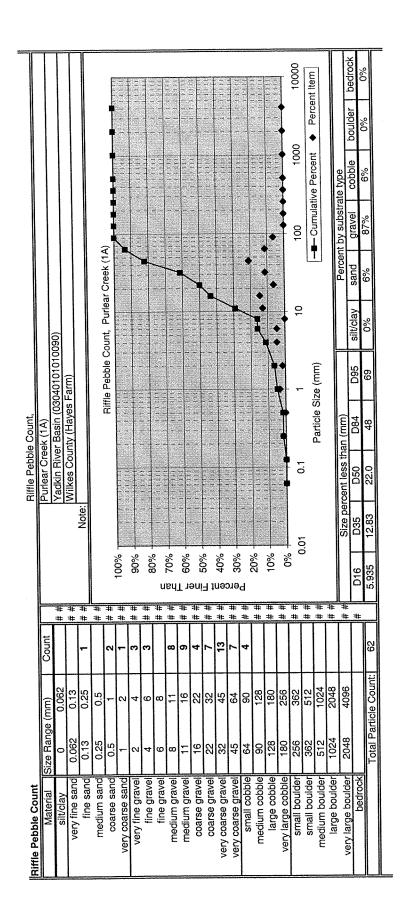
and service and a s

												11211	1 1 1 1			V I I LEU								\mathbf{F}	5	0%0
							1		-	-						-		1				Dursont itom		1000	Japinog	%0
							111		1 1 1 1 1 1			1 1 1 1 1 1						111111						ite type	cobbie	%0
				6	(;) 				1 1 1 1	111		1	- 10		1 1 2						100		-	Percent by substrate type	gravel	6%
), deerO	ear Ureek (1 1 1			1 1 1 1			1 1 1				•					Percen	sand	80%
	060)			((Pool Pebble Count, Purlear Creek (z)			1111													10				silt/clay	3%
	Yadkin River Basin (03040101010090)	Farm)			ol Pebble (- 						•				•	-		e (mm)			D95	13
ek (2)	er Basin (03	nty (Hayes		1	P			1 1 1 1				5					•					Particle Size (mm)		an (mm)	D84	÷
Purlear Creek (2)	Yadkin Rive	Wilkes County (Hayes Farm)						1 1 1 1					1111			11111					0.1			Size percent less than (mm)	D50	0 Y
	الحميت		Note:							-			-			-			1 1	-	1			Size per	D35	90 U
						100%	+ %06	80%	2 D L	19170%	Н _{60%} –	ləu	iī 50%	ent ent 40% +	sic Sic	P. 20%	20% +	/001	- % <u>0</u> 1	+ %0	0.01				D16	0 4 7 0
	#	# #	#	#	# #	# #	# #	# #	#	# #	# #	#	#	#	# #	#	# #	#	#	# #	# #		# #	# #	 	ī
Count	-		6	9	10	ε					-	-														č
p			0.25	0.5		~	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		
	0.062	0.13	P			1								32	45	64	60	128	180	256	362	512	1024	2048		
Size Range (mm) Co	0 0.062	0.062 0.13	0.13 0	0.25	0.5		2	4	9	8	11	16	22	e	7	small cobble						medium boulder		L	L	ľ

address en ander son ander s

directed and the

Purlear Creek Reach 2 - Materials

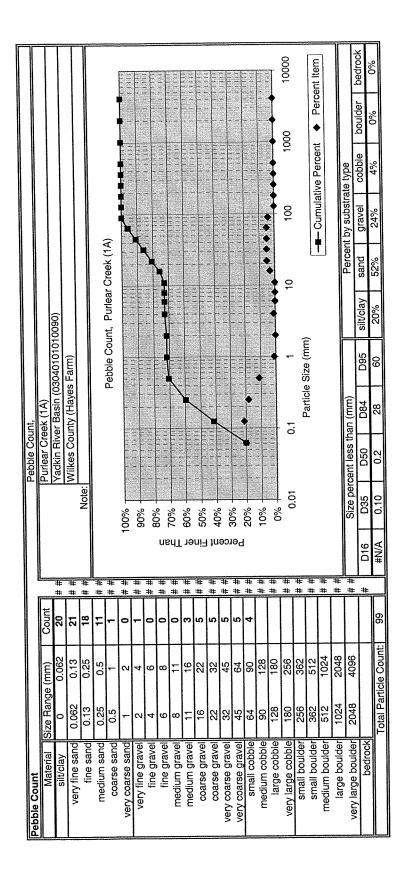

Doforence Deach						
100000000000000000000000000000000000000						
Stream: 1	Stream: Purlear Creek (1A)	ek (1A)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	040101010	(060		
Location:	Wilkes Cou	Location: Wilkes County (Hayes Farm)	Farm)			
Latitude:	1					
Longitude: County: Wilkes	 Wilkes					
Date: 1	Date: 6-24 to 6-26-2002	5-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, I	PTR, SS			
Channel Type: C4 -> G4	C4 -> G4					
Drainage Area (sq mi): 2.59	2.59					
Channel Materials						
	total	riffle	pood	run	glide	bar sample
D16	0.251	5.935	0.168	0.000	0.000	1
D35	1.34	12.83	0.24	0.00	0.00	;
DEO	8.1	22.0	0.3	0.0	0.0	;
D84	39	48	2	0	0	;
D95	60	69	5	0	0	1
Largest of Bar Sample						
% Silt/Clav	%0	%0	%0		-	:
% Sand	38%	6%	85%		;	:
% Gravel	58%	87%	15%	-	1	
% Cobble	4%	6%	%0		;	:
% Boulder	%0	%0	%0		;	1
% Badrock	%0	%0	%0		1	

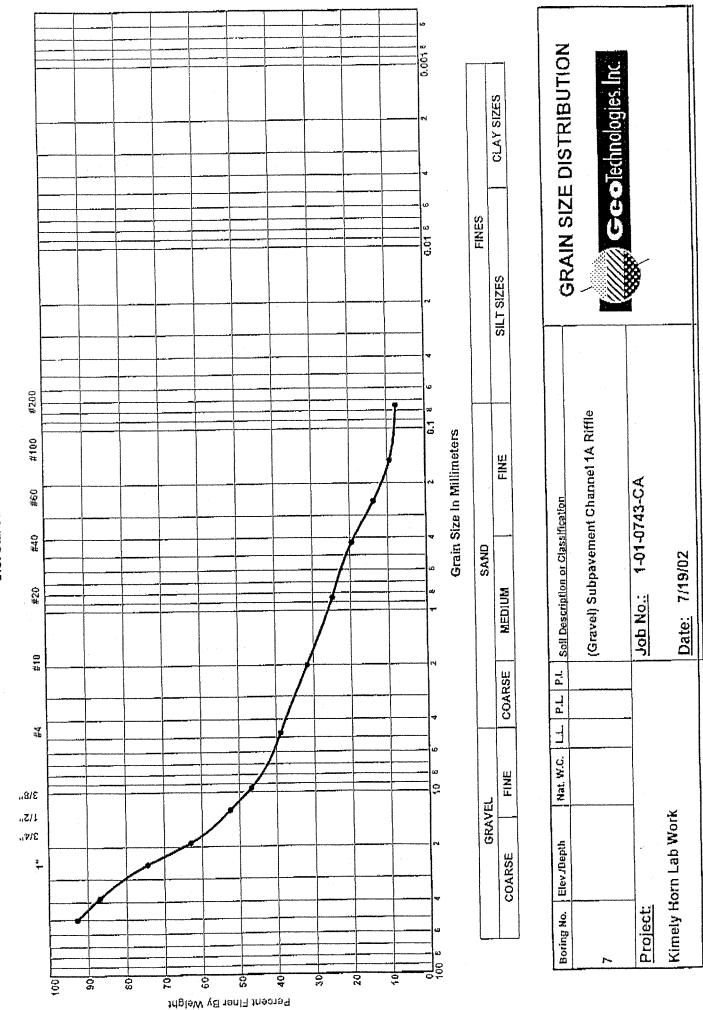
gi son de la cita. C

and the second sec

Ĕ														
					L		1							
Percent Pool: 40		Percent GI	Glide:	0	-	Pepple Count,	unt,							
Material Size Range (mm)	um)	Total #			<u> </u>	Purlear Creek (1A)	eek (1A)	101010100	10000					
0	0.062	0.0	#			adkin Riv	er Basin (Yadkin River Basin (03040101010090)	0080)					
and 0.062	0.13	0.0	# #			Vilkes Co	Wilkes County (Hayes Farm)	s Farm)						
0.13	0.25	16.0	# #		Note:									
medium sand 0.25	0.5	11.0	##											
coarse sand 0.5		5.9		/0001				Pebble Col	Pebbie Count, Purlear Creek (1A)	Creek (1A				Part of the
very coarse sand 1	2	5.0	# #					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X		Ň	11111		++
very fine gravel 2	4	4.9	##	+ %06					X					4.1.1.2
	9	5.9	# #	ì			· · ·			14	111	11111	1 1 1	1111
fine gravel 6	8	1.0	# #	80%	1 1	1 1 1 1				7				111
	11	7.7	##	+ %02				X						
medium gravel 11	16	8.7	# #	ì				1 1 1 1					1 1 1	111
	22	3.9	ا # #	₩ \$00		1111	/			<				
	32	6.8		50% +							1 111			E
very coarse gravel 32	45	12.6					1 1	1 1 1 1	Ň					
	64	6.8		40%	-	114	1 , (
	60	3.9	# # 	30% +							1111	41111		1 1
medium cobble 90	128	0.0	uə: #		1 1	1 1 1 1		1 1 1	$\sqrt{1}$	-				
	180	0.0	# #	<u>% 07</u>	1 1 1	1111	*		ł	-	111			1.611
	256	0.0	#	10% +							-		1 1 1	1111
	362	0.0	#	7%0										T
small boulder 362	512	0.0	#		Ţ	Ċ			10		100	1000	0	10000
medium boulder 512	1024	0.0	# #	5	-	5		-						07:00
	2048	0.0	# #	0	Particle Size (mm)	(mm)			٠	ercent Item	Percent Item			
	4096	0.0	# #											
L		0.0	L		Size perc	Size percent less than (mm)	han (mm)			Perce	Percent by substrate type	ate type		
	Weighted Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
		103		0.251	1.34	8.1 8	99 93	09	%0	38%	58%	4%	%0	%0

yy szere ben de renderin gyantas bet antikanana Banana artikanan kanana hanan artikanana artikananak kentereterine




Purlear Creek (1A)	Yadkin River Basin (03040101010090)	Wilkes County (hayes ratif)			Pool Pebble Count, Puriear Creek (14)							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									TU T			s than (mm)		
	#	#	# Note:	#	# #	# # 100%	# #		I					#	#	Ч	# # 50%		#	+ %0 # #	# # 0.01	# #	# #		_	0.168 0.24
Count	*		15 #	11	4	4		<u>ه</u>	-			Ī														40
Size Range (mm)		0.062 0.13	0.13 0.25	0.25 0.5	0.5 1	1 2	2 4	4 6	6 8	8 11			22 32	32 45		64	06		180	256	362	512	1024 2048	2048 4096		Total Darticle Count-1
Material R	silt/clay	very fine sand	fine sand	medium sand	coarse sand	verv coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	smail boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	

na a servició de compañía Venero de compañía de compañí

, pop pri nuk kinde – vije virit ve versk Beenvinsdaarense – det datene deredd

Purlear Creek Reach 1A - Materials

U.S. Standard Sieve Sizes

10014 1101#

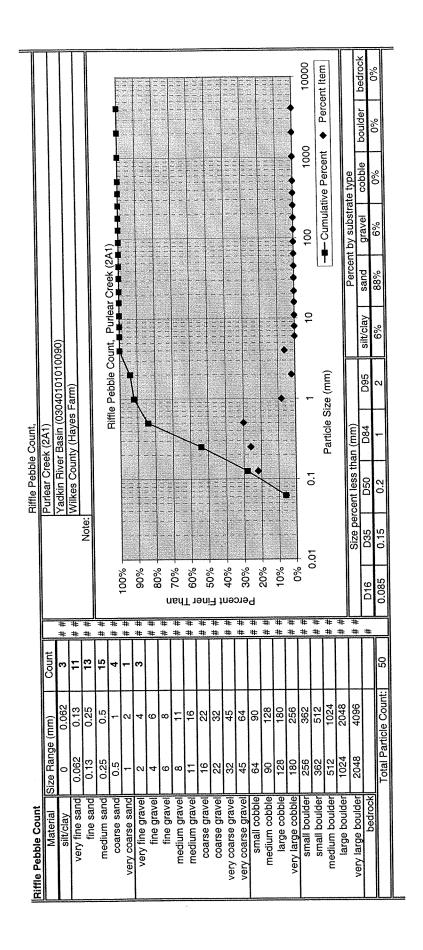
CUTAATAAUATATA

717 100 CTC 01+CA 9889 CT+DA

Reference Reach						Hints
Stream:	Stream: Purlear Creek (2A1)	ek (2A1)				
Watershed: Yadkin River Basin (030401010090)	Yadkin Rive	er Basin (03	040101010	(060		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:	1					
Longitude: County: Wilkes	 Wilkes					
Date:	Date: 6-24 to 6-26-2002	3-2002				
Observers: CWE, NW, CU, AHK, FTH, 33	CWE, NW,	CU, AHK, I	со, т 1, оо			
Channel Type: E5b	E5b					
Drainage Area (sq mi): 0.2	0.2					
Channel Materials						
	total	riffle	pood	run	glide	bar sample
D16	0.079	0.085	0.074	0.000	0.000	-
D35	0.14	0.15	0.13	0.00	0.00	;
D50	0.2	0.2	0.2	0.0	0.0	!
D84	0		0	0	0	!
D95	2	2	-	0	0	ł
Largest of Bar Sample						
% Sit/Clay	8%	%9	10%			1
% Sand	87%	88%	86%		1	1
% Gravel	5%	6%	4%	***		1
% Cobble		%0	%0		1	
% Boulder	%0	%0	%0		1	1
% Bedrock	%0	%0	%0	i	1	

Apple of the second sec

relations and the first second s


							Durdent Crock (9A1)																	10 100 1000 10000		Percent Item		ŀ	
				Yadkin River Basin (030401010100000)	-arm)			Pepple Count, Full			11 1 1 1 1			1 1 1 1			11111111111					•							DOF I SIL/Clav
	4	int,	ek (2A1)	er Basın (030	Wilkes County (Hayes Farm)		ſ	ĩ					%	<i>W</i>	<i>N</i>	//	W 1 1 1 1		•	1111								າan (mm)	LaC
		Pepple Count,	Purlear Creek (2A1)	Yadkin Riv	Wilkes Cot				11111						3111 1		1 1 1 1 1		%	•				6		ze (mm)		Size percent less than (mm)	020
						Note:				-	•						- 1	1 1						100	10.1	Particle Size (mm)		Size pe	цор С
							-		%nn1	%06		# 80%	# 70%				יד	əui	# IE 30%		erc		%U	5	#	#	#		40
		t Glide:	#	#	#	#	#	#	# # 	# # 														# # 	#	#	*	#	Γ
	Percent Ri	Percent Gl	Total #	8.0	23.0	28.0	26.0	9.0	- - 0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	CO F
			(mm)	0.062	0.13	0.25	0.5	-	2	4	6	8	11	16	22	32	45	64	6	128	180	256	362	512	1024	2048	4096		Moinhtod Count.
nt		50	Size Range (mm	0	0.062	0.13	0.25	0.5		5	4	9	ω	11	16	22		45			128			362	512	1024	2048		
Weighted Pepple Count	Percent Riffle:	Percent Pool:	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	

Appendix C

артан санана Казана санана Макадартана санана Макадартана санана

la de la construcción de la constru La construcción de la construcción d

> Purlear Creek Reach 2A1 - Materials

Albert of Construction

		Ī		<u></u>			1111		1 1 1								1.1.1.1				10000				hadrock		% <u>^</u>
												-		н I I							ç	Cumulative Darcent	Itom cioci		bouldor		0%0
								1111		1111			11111				1 1 1 1 1				1000			404.000	are type	couple	0%
					41)			1		1 1 1			1 1 1		1 1 2 3		1 1 1 1	1 111				001		- 1	Percent by substrate type	gravel	4%
					Crook ()					1 1 1						1 1 1					• •			1	Percer .	sand	86%
	(060)					Pool Pepple Count, Punear Cleek (201				11111			1 1 1 1 1			11111				•		01				silt/clay	10%
	Yadkin River Basin (0304010101090)	Farm)			0-1-1-0						1							1 11	•	-		,	ze (mm)			D95	
ek (2A1)	er Basin (00	Wilkes County (Hayes Farm)			ſ	ŏ							/					5					Particle Size (mm)		ian (mm)	D84	0
Purlear Creek (2A1	Yadkin Riv	Wilkes Cou							1 1 2 1 2					11111	1		•			1111		0.1			Size percent less than (mm	D50	0.2
			Note:						-													0.01			Size pe	D35	0.13
							100% -	~ %06	80% -	l l	ран 10%	r T 60%	əu				d	20%	10%		%0					D16	0.074
	# #	# #	# #		# # 	#	# #	#	# #	# #	*	#	# #	# # 	# # 	# # 	#	#	#	# #	# #	#	# #	# #	# #	# [1
Count	2	12	u F	2 ;	╞	S	0	2																			50
<u> (mm) e</u>	0.062	0.13	100	C7.0	0.5	1	2	4	9	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096		Total Particle Count
ISiza Banda (mm	0	0.062	1000			0.5	-	5	4	9	ω	11			32		64		128	180	256		512	1024	2048		l.
Г	silt/clav	ven fine cand	2.000 01	tine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	hedrock	

general en de contractor en en en el contractor en el contractor en el contractor en el contractor en el contra Alterna en el contractor en Alterna en el contractor en

station and a station

Pebble Count						Pebble Count	int,							
Material	Size Range (mm)	Count	<u> </u>			Purlear Creek (2A1)	ek (2A1)							
sit/clay	0 0.062	#	#			Yadkin River Basin (03040101010090)	er Basin (00	304010101	(0600)					T
very fine sand	0.062 0.13	*	#			Wilkes County (Hayes Farm)	nty (Hayes	Farm)						
fine sand	0.13 0.25	*	#		Note:									
medium sand	0.25 0.5	#	#					1						
coarse sand	0.5 1	#	#				<u>n</u> .	ebble Coul	Pebble Count, Purlear Creek (2A1)	Creek (2A	Ê			
very coarse sand	1 2	#	#	100%		11111111		1 1111						
very fine gravel	2 4	*	#	06	80%	11111								
fine gravel	4 6	#	#			111111	1 1 1	111						
fine gravel	6 8	#	#	-	0//0	1121211			11211		1111			
medium gravel	8 11	*	#		20% +				111	1 1	1111	11111		
medium gravel	11 16	#	#		60%									
coarse gravel	16 22	#	#	ີຜ ອບເຼ	E0%				1 1 1 1 1	1 1	1111	1111		1115
coarse gravel	22 32	#	#		2 2							1 1 1 1 1	-	111.1
very coarse gravel		#	#		40%			1111			1 2 1 1 1			
very coarse gravel	45 64	#	#		30% + + +					1 1	1111			
small cobbiel	64 90	#	#			11111								1111
medium cobble	90 128	*	#				1 1 1	-	1111		1111			
large cobble	128 180	#	#	2	×.01									
very large cobble	180 256	#	#	0	+ %0	Ī								
small boulder	256 362	#	#		0.01	0.1			10	_	001	5	1000	00001
small boulder	362 512	#	#				Particle Size (mm)	ize (mm)		L		1		
medium boulder		#	#							T			•	Percent trem
large boulder	1024 2048	*	#											
verv large boulder	2048 4096	#	#		Size per	Size percent less than (mm)	an (mm)			Percen	Percent by substrate type	ite type		
bedrock		#		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
	Total Darticla Count-I		<u> </u>	0000	0.00	0.0	0	0	1	I			1	
	101al Latitude Courte	<u> </u>	Ĩ	222.2										

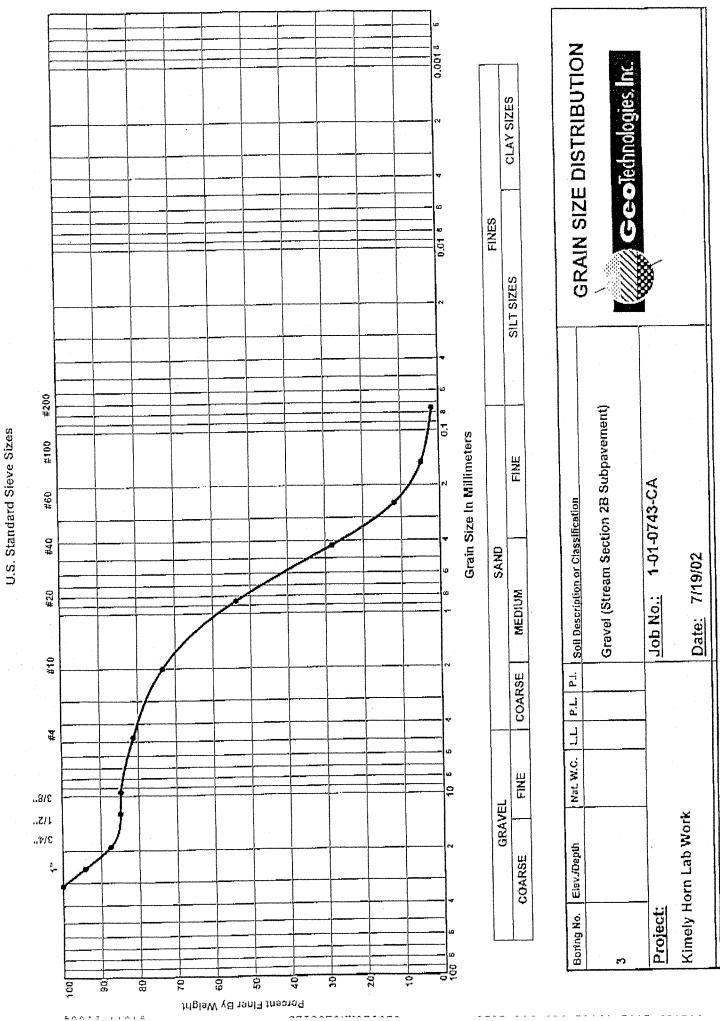
genomingen versionen genomingen genomi

Reference Reach						Hints
Stream:	Stream: Purlear Creek (2B)	ek (2B)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	040101010	(060		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:						
Longitude:						
County: Wilkes	WIIKES					
Date: 10-24 to 0-20-2002 Observers: CWE, NW, CD, ARK, PTR, SS	Uate: 0-24 t0 0-20-2002 rvers: CWE, NW, CD, AF	CD, ARK, F	oTR, SS			
Channel Type: B5c	B5c					
Drainage Area (sq mi): 0.08	0.08					
Channel Materials						
	total	riffle	pood	run	glide	bar sample
D16	#N/A	#N/A	0.000	0.000	0.000	
D35	0.09	0.09	0.00	0.00	0.00	
DEO	0.3	0.3	0.0	0.0	0.0	;
D84	-	-	0	0	0	;
D95	32	32	0	0	0	1
Largest of Bar Sample						
% Silt/Clav	29%	29%			1	1
% Sand	60%	60%		1	1	1
% Gravel	9%6	9%6		1	***	
% Cobble	2%	2%	-	1		;
% Boulder	%0	%0		1		
% Bedrock	%0	%0		1 1 1	***	

ge e our rees

nya kutoro presto na prio proto proposati proto proposati protocera protocerata protocera protocera protocerata protocerata pr

Purtear Creek Reach 2B - Materials


Weighted Pebble Count													
Percent Riffle: 100	Perc	Percent Run:											
Percent Pool:	Perce	Percent Glide:			Pebble Count	nt,							
Material Size Range (mm)	Total #	#1			Purlear Creek (2B)	ek (2B)	01010101						
silt/clay 0 0.062	29.0	*	#		Yadkin Riv∉	er Basin (03	Yadkin River Basin (03040101010090)	080)					
very fine sand 0.062 0.13	11.0	#	#		Wilkes County (Hayes Farm	nty (Hayes	Farm)						
fine sand 0.13 0.25	6.0	*	#	Note:									
medium sand 0.25 0.5	12.0	#	#					C L					
coarse sand 0.5 1	20.0	#					Pebble Cour	Pebble Count, Puriear Creek (2b)	36K (25)	-0-0-0-0			
very coarse sand 1 2	11.0	#	%00L #								111.		
very fine gravel 2 4	0.0	#	%06 #		TTTTTTTTTTT		K						
fine gravel 4 6	1.0	#	#					1 1 1 4 1	1 1 1 1				
	3.0	#	# 80%								+ + 1 1 5	1.1.1	
medium gravel 8 11	0.0	#	# 70%										
11	1.0	#	#						1111	1	1 1 2 2 1		1111
16	0.0	#	# e0%				1 1 1 1 1						1111
	1.0	#	# 50%							-			
32	2.0	#	ГI		\ 			1111		1	1111		
45	1.0	#			1						· · · · · · · · · · · · · · · · · · ·		1 1 1
64	2.0	#	# El 30%	,	>							-	1111
	0.0	#	uə					1 2 4 2 1		1			
	0.0	#								-		-	111
180	0.0	#	_		•	•	•					-	411
small boulder 256 362	0.0	#) () () () () () () () () () () () () ()										
small boulder 362 512	0.0	#	÷>		- - -	F	•	10		100	1000	0	10000
medium boulder 512 1024	0.0	#	#	0.01			-	2		1			
large boulder 1024 2048	0.0	#	#	Particle Size (mm)	e (mm)			٠	Percent Item -		- Pool -		- Glide
very large boulder 2048 4096	0.0	#	#										
bedrock	0.0	#		Size pet	Size percent less than (mm)	an (mm)			Percent	Percent by substrate type	e type		locatood
Weighted Count:	nt: 100	0	D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	poulder	Deulock
		007	V/N#	вО 0	0.3	•	32	29%	80%	6%	2%	0%	0%0

							1	1111		111				111	111	111			111		10000	met Hom			Joor Pod	Dedioch	0%
													-			1			1 1 1	•	Q		•		the states		0% 0
															1111111				111111		1000		ING Percent		ate type	copple	2%
					í	(B)			111		-	1			1111		-	1 11		• •	100				Percent by substrate type	gravel	6%
					0	ar Ureek (2				1 1 1					1 1 1		1 1 1	-		• • • •		L		ſ	Percer	sand	60%
	1000	(<u>USU</u>)			-	Riffle Pebble Count, Puriear Creek (2b)			ELLIS -						11111		1111				C -	2				silt/clay	29%
	010101010	Yadkin River Basin (03040101010090)	Farm)			lle Pebble C				5			-		1 1 1	-	1		•	1.1	Ŧ	-	Particle Size (mm)			D95	32
1001 1001	sek (zb)	er Basın (U	Wilkes County (Hayes Farm)			Rif							5	Ē		-							Particle S		าลก (mm)	D84	•
C voluin	Puriear Creek (20)	Yadkin Hiv									1111.1.4		11111	11111			1		•		Ċ	5			Size percent less than (mm	D50	0.3
				Note:										-			-					0.01			Size pe	D35	0.09
							%00L	%06	20°/2		20% ря	т 1 80%					d	%02	10%	%0	ò					D16	#N/A
	-	#	#	*	#	# #	#	#	# #	#	# #	# #	# #	#	#	# #	# #	#	# # 	# #	# # 	#	# #	# #	# #	*	
	Count	29	11	9	12	20	11	0	-	e	0	-	0		2	-	2										100
	e (mm)	0.062	0.13	0.25	0.5	1	2	4	9	80	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096		Total Particle Count:
	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	ω	11	16	22		45	64	06			256		512	1024	2048		
	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	bedrock	

Appendix C

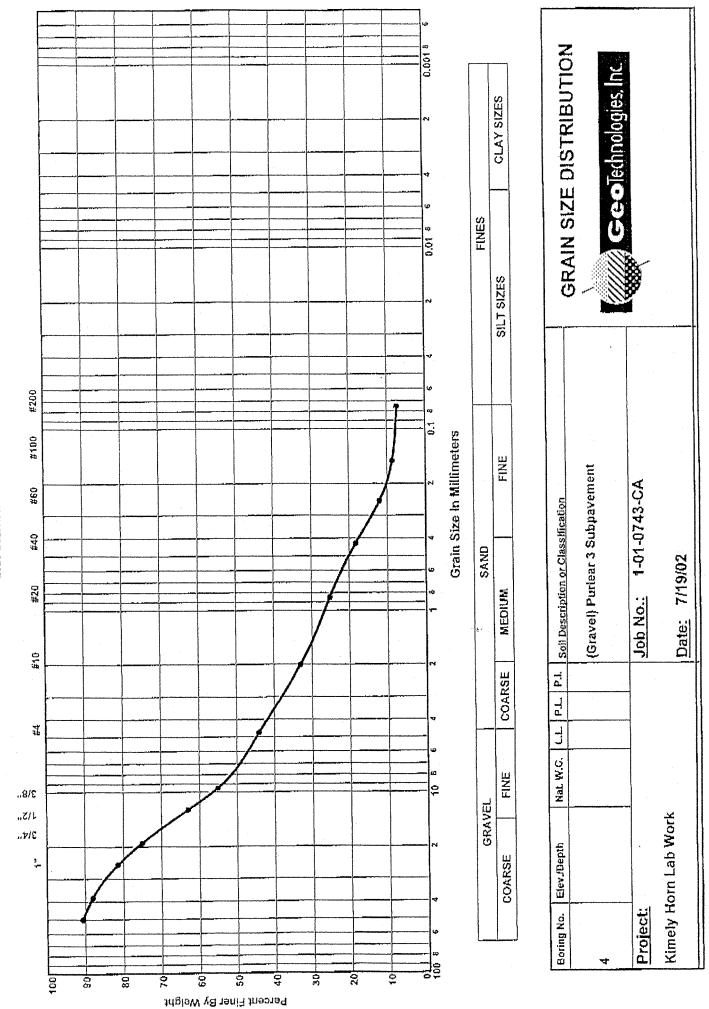
•

Purlear Creek Reach 2B - Materials

Reference Reach						Hints
Stream:	Stream: Purlear Creek (3)	ek (3)				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	040101010	(060		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:	1					
Longitude:						
County: Wilkes	Wilkes					
Date:	Date: 6-24 to 6-26-2002	5-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, F	oTR, SS			
Channel Type: G4	G4					
Drainage Area (sq mi): 0.72	0.72					
Channel Materials						
	total	riffle	pood	run	glide	bar sample
D16	0.084	0.084	0.000	0.000	0.000	1
D35		1.11	0.00	0.00	00.0	
DEO	2.6	2.6	0.0	0.0	0.0	1
D84		14	0	0	0	:
D95	45	45	0	0	0	:
Largest of Bar Sample						
% Silt/Clay	9%	9%6			1	;
% Sand	37%	37%		***	;	
% Gravel	51%	51%	1			!
% Cobble		3%			ļ	:
% Boulder	%0	%0	1		1	1
% Bedrock	%0	%0	1		1	

Alexandropolitical de la constante

Weighted Pebble Count													
Percent Riffle: 100	Percent R	un:											
Percent Pool:	Percent GI	ide:			Pebble Count,	unt,							
Size Range (mm)	Total #				Purlear Creek (3)	eek (3)		1000					
0 0.062	9.0	#		<u></u>	Yadkin Riv	er Basin (U	Yadkin River Basin (03040101010090)	080)					
very fine sand 0.062 0.13	16.0	#			Wilkes Col	Wilkes County (Hayes Farm)	Farm)						
fine sand 0.13 0.25	6.0	# #		Note:									
medium sand 0.25 0.5	1.0	# #											
0.5	1.0		,000				Pebble Col	Pebble Count, Purlear Creek (3)	Creek (3)				
very coarse sand 1 2	13.0		100%		1111		1 1 1 1 1 1 1		4				
very fine gravel 2 4	11.0		+ %06				1 -			1 1 1		-	111
fine gravel 4 6	3.0	##	ieee		1 1 1 1		-			1 11	111111	-	
	15.0	#	80% +		1111		1						
medium gravel 8 11	5.0	# #	+ %02					1				-	
11	7.0	# #	,200				1 1 1 1	1.1		1.1.1			
	1.0	ا # #	+ %ng										
22	2.0		50% +							-		-	
32	5.0	1 # #	/001					1 4 1 1 3 1		111	1111		
	2.0	#	40%		1111					-		-	1.1.1
small cobble 64 90	2.0		30% +										
	1.0	#	/000					1111		1 1 1			
	0.0	#	% ^/ /		•		•	•				-	141
180	0.0	#	10% +		~				•	1 1			
small boulder 256 362	0.0	# #	7%0										
362	0.0	# #			- - -	I	. .	0		100	1000	0	10000
medium boulder 512 1024	0.0	# #	10.0	5	5		-						07:0
large boulder 1024 2048	0.0	# #	۵.	Particle Size (mm)	e (mm)			٠	Percent Item				aniis
very large boulder 2048 4096	0.0	# #									40.00		
bedrock	0.0	#		Size per	Size percent less than (mm	han (mm)			Percei	Percent by substrate type	adki ali	Loudor	Joorbod
Weighted Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	Japinog	
tario oleited letet eret	100	0.084	84	111	2.6	14	45	8%	37%	51%	3%	0%0	0%N


alter of the anti-section of the section of the sec

							1 1 1 1		1111		1411	1111			1414	1111			11.11		10000	aont Hom			- Louise	Degrock	%n
						Riffle Pebble Count, Purtear Creek (3)	1 1 1	1 1													0		•			poulder	%0
																		1 1 1 1 1			1000	1	IVe Fercen		ite type	cobble	3%
					Briffle Pebblie Count. Purlear Creek (3)						111		-		112		111				100	0	Particle Size (mm)	•	Percent by substrate type	gravel	51%
																						Ľ			Percen	sand	37%
	1000	190)		Note:																•	10	2				silt/clay	9%
	Purlear Creek (3)	040101010	rarm)														1 1		•		- -	-				D95	45
e count,		Yadkin River Basin (03040101010090)	Wilkes County (Hayes Farm)														30% 30% 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								an (mm)	D84	14
HIME PEDDIE COUIII,											1111		11111					20%			- c	5			Size percent less than (mm)	D50	2.6
	-										-				ent 40%							10.0			Size per	D35	1.11
							%00L	%06	80%		% 20%	r TI 80%							10%	~₀U		2				D16	0.084
		*	# #	#	#	# #	# #	# #		# #	# #	# #	#					# #	# #	#		#	#	# #	# #	*	1
and the second	Count	ნ	16	9	۰	-	13	÷	m	15	ъ	7	1	2	ъ	2	2										100
	(mm)	0.062	0.13	0.25	0.5		2	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096		Total Particle Count:
	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	8	11	16	22	32	45		60				362	512		2048	L	
Riffle Pebble Count	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	hedrock	

gle an analysis allowed and star

20 August Statistics Statistic

bedrock 10000 Percent Item %0 boulder %0 ٠ 1000 5. 1 1 I I Percent by substrate type %0 26% 100 Pebble Count, Purlear Creek (3) sand 64% • 9 silt/clay 10% Purlear Creek (3) Yadkin River Basin (03040101010090) • Particle Size (mm) D95 35 Wilkes County (Hayes Farm) Size percent less than (mm) D84 σ Pebble Count, 0.1 D50 0.2 Note: D35 0.16 0.01 20% 10% %0 30% %06 80% 70% %09 40% 100% 50% D16 0.081 Percent Finer Than Ŧ Ŧ Ŧ # # # # Ŧ # # # # # # Ŧ # -11-# Ŧ # # # # # # # # :#* :## # ***** ±Ŀ # :##: Count 101 9 16 8 2 თ 4 2 9 4 N 2 ŝ Fotal Particle Count: 1024 2048 4096 0.13 256 362 512 0.25 128 180 0.062 8 0.5 10 22 45 64 Size Range (mm) ŝ ဖ œ 2048 0.25 1024 0.062 0.13 256 ²⁰ 82 362 512 180 0.5 9 22 32 45 84 4 œ very fine sand very coarse sand very fine gravel fine gravel large cobble small boulder large boulder very large boulder coarse gravel very large cobble small boulder medium boulder medium sand coarse sand fine gravel medium gravel medium gravel coarse gravel very coarse gravel very coarse gravel small cobble medium cobble bedrock Material silt/clay Pebble Count

U.S. Standard Sieve Sizes

. .

and a growing and a structure of the state

Reference Reach						Hints
Stream:	Stream: Puriear Creek	ę				
Watershed: Yadkin River Basin (03040101010090)	Yadkin Rive	er Basin (03	040101010	(060		
Location:	Location: Wilkes County (Hayes Farm)	nty (Hayes	Farm)			
Latitude:	ł					
Longitude:	 Wilkes					
Date:	Date: 6-24 to 6-26-2002	3-2002				
Observers: CWE, NW, CD, ARK, PTR, SS	CWE, NW,	CD, ARK, F	oTR, SS			
Channel Type: F4	F4					
Drainage Area (sq mi): 0.15	0.15					
Channel Materials					:	-
	total	riffle	pool	run	glide	bar sample
D16	#N/A	#N/A	0.000	0.000	0.000	1
D35		0.25	0.00	0.00	0.00	1
D50		0.5	0.0	0.0	0.0	1
D84		5	0	0	0	:
D95	8	8	0	0	0	;
Largest of Bar Sample						
% Silt/Clay	18%	18%			;	:
% Sand	49%	49%	1	-	;	;
% Gravel	33%	33%	1		;	1
% Cobble		%0	1	***	1	:
% Boulder	%0	%0	:		ł	1
% Bedrock	%0	%0				

and a second and a second and a second and a second a s

Purlear Creek Reach 4 - Materials

Appendix C

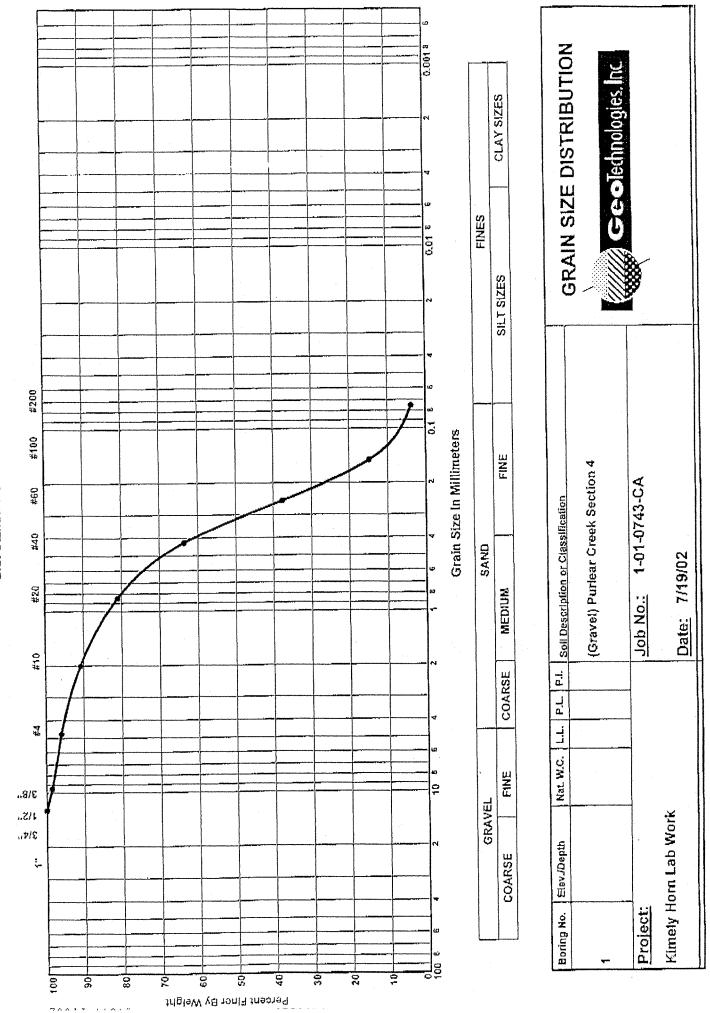
	:ur	de:		# #	# #	9.0 # # Note:	# #	#	#	<u>#</u>		#	# #70% 	# #	#	# # _ R 50% +	#	əui # #	*	# # 	,6LC # #	# : # : 		#		# # Particle Size (mm)	# #	# Size percent less than (mm) retret up substate		D16 D35 D94 D94 D35 000 D94
		ď	<u>e</u> I	<u>≍</u> 1		Note:		2000		60% 111		80%	70%										0%	0.01	10.00	Particle Size		Size perce	D16 D35	-
	Run:			#	# #	#	#																					#	<u> </u>	-
	Percent Ri	Percent Gli	Total #	18.0	8.0	9.0	14.0	9.0	9.0	12.0	8.0	10.0	2.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	
It	100		Size Range (mm)	0 0.062	0.062 0.13	0.13 0.25	0.25 0.5	0.5 1	1 2	2 4	4 6	6 8	8 11	11 16		22 32		45 64	64 90				256 362	362 512	512 1024	1024 2048	2048 4096		Weinhted Count:	
Weighted Pebble Count	Percent Riffle:	Percent Pool:		silt/clay	verv fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	smail cobbie	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock		-

Purlear Creek Reach 4 - Materials

							1111		1111	11 2 2 1 1					1111		1 1 1 1 1			10000	Percent Item			r hedrock	╋	0/0
							-		-	•							1 1	1		0	•			houlder		070
						11111	11111		11111						111111			1 1 1 1 1	•	1000	ino Dorront	ואב בפורפווי	to trino	cobble	20000	0%0
									111 1	- **			1 1 1	1	-			1		100	C.umulat		+ his or hotro	reficent by substrate type	giavei	33%
				Joor Crock	lear Creek												1				Ľ	Γ		Leicen	sanu	49%
	060)				Riffle Pebble Count, Puriear Vieek						11111			11111		11111			•	10				- 11/11	sirvciay	18%
	Yadkin River Basin (03040101010090	Farm)			little Pebble									1 1				•	-	-	,	ize (mm)			D95	8
ek	er Basin (03	Wilkes County (Hayes Farm)		ſ	II.								<		Į.	111111	•		1 1 1			Particle Size (mm)		an (mm)	D84	ഹ
Purlear Creek	Yadkin Rive	Wilkes Cou								11111			11111			1		•		, c				Size percent less than (mm)	D50	0.5
			Note:							-					-				·	. to				Size per	D35	0.25
					,000,	%001	%06	200% 200%		%0/ ец	тт 80%		ч 5 5	40%	erc 30%		%02	10%	%0		J				D16	#N/A
	#	# #	#	#	# #			#	# #	# #	¥ #	# #	# #	# #		# #	# #	# #			# # 	# #	#	#	#	1
Count	18	8	6	14	6	6	12	8	10	2																Q.F
(mm)	0.062	0.13	0.25	0.5	1	2	4	9	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096		Total Bartialo Count:
Size Bande (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	ω	11	16	22	32	45	64	06		180	256	362	512	1024	2048		
Riffle Pebble Count	Τ	verv fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	

Purlear Creek Reach 4 - Materials

presente a presente apresente province presente a presente presente a presente a present


Appendix C

11,	k	r Basin (03040101010030)	nty (Hayes Farm)			Pepple Count, Purlear Creek														10000 1000 10000	001	Particle Size (mm)			Percent by substrate type		0 2 74% 22% 4% 0% 0% 10% 10%
Pebble Count,	Purlear Creek	Yadkin River Basin (03040101010090)	Wilkes County (Hayes Farm)			Pepple															0.1	Particle Size (mm)			Size percent less than (mm)		
		<u></u>		# Note:	#	#	# 100%		/000			# X 1 80%	#				# 150%		*	~0 	# 0.01	#	#	#	# Size perc	D16 D35	A/N# A/N#
	unt	74 #	# 6	# 9	#	# 0	4	#	#	#	# 7	2 #	#	#	#	#	#	#	*	<u>#</u>	#	#	*	#	#	*	100
	Size Range (mm) Coun	0 0.062 7	0.062 0.13	0.13 0.25	0.25 0.5	0.5 1	1 2	2 4	4 6	6 8	8 11	11 16	16 22	22 32	32 45	45 64	64 90		128 180	180 256	256 362	362 512	512 1024	1024 2048	2048 4096		Total Particle Count-1
Pebble Count	terial	sit/clay	very fine sand 0		L		very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble		small boulder	medium boulder	L	L	L	_

Purlear Creek Reach 4 - Materials

ing a second sec

Appendix C

U.S. Standard Sieve Sizes

.

Appendix D: Entrainment Calculations

Entrainment Calculation Form Sample A

Site: Purlear Creek Reach 2A2

Crew: CWE, NW, CD, ARK, PTR, SS

Date: 6-24 to 6-28-2002

* Entrainment calculations are not valid due to excessive bank wasting caused by cattle hoof shear

$\tau_{ci} = 0.083$	34(d _i /d ₅₀) ^{-0.872}	<-1 Eq. 2	->	$\tau_{ci} = 0.0384 (D_i/d_i)^{-0.887}$
Value	Variable		D	efinition
6.6	d _i (mm)	D50 Bed Materia	al (D50 fro	om riffle pebble count)
3	d ₅₀ (mm)	Bar Sample D50) or Sub-p	avement D50
30	D _i (mm)	Largest particle	from bar s	sample (or subpavement)
		Outside Para	meters	4
r				

Unkno	wn	τ _{ci}	Critical Dimensionless Shear Stress

Bankfu	ll Mean Depth Re	quired for Entrainment of Largest	Particle in Bar Sample:
	$d_r = (\tau_{ci}^* 1.65^* I)$	D _i)/S _e 1.65=submerged specifi	ic weight of sediment
Value	Variable	Defin	ition
Unknown	τ_{ci}	Critical Dimensionless Shear	Stress
0.09843	D _i (feet)	Largest particle from bar sam	ple
0.022	S _e (ft/ft)	Existing Bankfull Water Surfa	ce Slope
#VALUE!	d _r (ft)	Bankfull Mean Depth Requi	red
0.5	d _e (ft)	Existing Bankfull Mean Dep section)	oth (from riffle cross
		#VALUE!	
Stable (d _e /d	=1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)

	$S_r = (\tau_{ci}^* 1.65)$	*D _i)/d _e 1.65=submerged specific	weight of sediment
Value	Variable	Defin	iition
Unknown	τ_{ci}	Critical Dimensionless Shear	Stess
0.09843	D _i (feet)	Largest particle from bar sam	nple
0.5	d _e (ft)	Existing Bankfull Mean Depth	n (from riffle cross section)
#VALUE!	S _r (ft/ft)	Bankfull Water Surface Slope	e Required
	<u> </u>	#VALUE!	
Stable (S _e /S _r	=1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1

Sediment Transport Validation

30	Largest Particle in Bar Sample D _i (mm)
0.69	Bankfull Shear Stress $\tau_c=\gamma RS$ (lb/ft ²)
90	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
0.28	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Velocity Comparison Form

Site:Purlear Creek Reach 2A2Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Inpu	t Variable		Output Variables							
Bankfull Cross Sectional Area (A _{BKF})	10.6	ft ²	Bankfull Mean Depth $D_{BKF} = (A_{BKF}/W_{BKF})$	0.5	ft					
Bankfull Width (W _{BKF})	22		Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	21.0	ft					
D ₈₄	126	mm	D ₈₄ (mm/304.8)	0.413	ft					
Bankfull Slope	0.022	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	0.50	ft					
Gravity	32.13	ft/s ²	R/D ₈₄ (use D ₈₄ in FEET)	1.22	ft/ft					

R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	3.2	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.072	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	1.94	ft/s

u/u* = 2.83+ 5.71c	ogR/D ₈₄	
u* : u*=(gRS) ^{0.5}	0.597	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	1.98	ft/s

Mannings n by Stream Type			
Stream Type	F3		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.035	ft ^{1/6}	
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	4.00	ft/s	

.

Continuity Equation			
\mathbf{Q}_{BKF} (cfs) from regional curve or stream gage calibration	114	cfs	
Velocity: (u=Q/A or from stream gage hydraulic geometry	10.75	ft/s	

Purlear Creek Reach 2 - Entrainment and Velocity

Velocity Comparison Form

Site:Purlear Creek Reach 2Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Share manufactures

Inpu	ıt Variable		Output \	/ariables	
Bankfull Cross Sectional Area (A _{BKF})	17.8		Bankfull Mean Depth D _{BKF} = (A _{BKF} /W _{BKF})	1.1	ft
Bankfull Width (W _{BKF})	16.2		Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	14.0	ft
D ₈₄	54	mm	D ₈₄ (mm/304.8)	0.177	ft
Bankfull Slope	0.012	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	1.27	ft
Gravity	32.13	ft/s²	R/D ₈₄ (use D ₈₄ in FEET)	7.18	ft/ft

R/D84, u/u*, Mannings n				
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	7.3	ft/s/ ft/s		
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.036	ft ^{1/6}		
Velocity: from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	5.32	ft/s		

u/u* = 2.83+ 5.7log	R/D ₈₄	
u *: u*=(gRS) ^{0.5}	0.700	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	5.40	ft/s

Mannings n by Stream Type			
Stream Type	C4		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.019	ft ^{1/6}	
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	10.08	ft/s	

Continuity Equation			
$\mathbf{Q}_{\mathbf{BKF}}$ (cfs) from regional curve or stream gage calibration	141.23	cfs	
Velocity: (u=Q/A or from stream gage hydraulic geometry	7.93	ft/s	

Entrainment Calculation Form Sample A

Site:Purlear Creek Reach 1ACrew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

	Critical Dimensionless Shear Stress:				
$\tau_{ci} = 0.08$	$\tau_{ci} = 0.0834 (d/d_{50})^{-0.872}$ <-1 Eq. 2-> $\tau_{ci} = 0.0384 (D/d_i)^{-0.887}$				
Value	Variable		Definition		
22	d _i (mm)	D50 Bed Material (D50	D50 Bed Material (D50 from riffle pebble count)		
10.2	d ₅₀ (mm)	Bar Sample D50 or Su	Bar Sample D50 or Sub-pavement D50		
58	D _i (mm)	Largest particle from b	Largest particle from bar sample (or subpavement)		
	Equation 2				
0.016 $ au_{ci}$ Critical Dimensionless Shear Stress					

Bankf	Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample:				
	$d_r = (\tau_{ci}^* 1.65^* D_i)/S_e$ 1.65=submerged specific weight of sediment				
Value	Variable	Defi	nition		
0.016	τ _{ci}	Critical Dimensionless Shear	r Stress		
0.19	D _i (feet)	Largest particle from bar san	Largest particle from bar sample		
0.0092	S _e (ft/ft)	Existing Bankfull Water Surf	ace Slope		
0.6	d _r (ft)	Bankfull Mean Depth Requ	lired		
0.9	d _e (ft)	Existing Bankfull Mean De section)	pth (from riffle cross		
	Degrading				
Stable (d _e /d	l _r =1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)		

$S_r = (\tau_{ci} * 1.65 * D_i)/d_e$ 1.65=submerged specific weight of sediment				
Value	Variable	Defin	ition	
0.016	τ_{ci}	Critical Dimensionless Shear Stess		
0.19	D _i (feet)	Largest particle from bar sample		
0.9	d _e (ft)	Existing Bankfull Mean Depth (from riffle cross section)		
0.006	S _r (ft/ft)	Bankfull Water Surface Slope Required		
		Degrading		
Stable (S _e /S _r =	=1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1)	

Sediment Transport Validation

58	Largest Particle in Bar Sample D _i (mm)
	Bankfull Shear Stress $\tau_c = \gamma RS$ (lb/ft ²)
70	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
0.48	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Purlear Creek Reach 1A - Entrainment and Velocity

Velocity Comparison Form

Site:Purlear Creek Reach 1ACrew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Inpu	it Variable		Output	Variables	
Bankfull Cross Sectional Area (A _{BKF})	33.1	ft ²	Bankfull Mean Depth D _{BKF} = (А _{BKF} /W _{BKF})	0.8	ft
Bankfull Width (W _{BKF})	39	ft	Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	37.3	ft
D ₈₄	38.9	mm	D ₈₄ (mm/304.8)	0.128	ft
Bankfull Slope	0.0092	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	0.89	ft
Gravity	32.13	ft/s²	R/D ₈₄ (use D ₈₄ in FEET)	6.95	ft/ft

R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	7.8	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.032	ft ^{1/6}
Velocity: from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	4.12	ft/s

u/u* = 2.83+ 5.7logR/D ₈₄		
u* : u*=(gRS) ^{0.5}	0.512	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	3.91	ft/s

Mannings n by Stream Type		
Stream Type		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.019	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	6.95	ft/s

Continuity Equation		
${f Q}_{{\sf BKF}}$ (cfs) from regional curve or stream gage calibration	191	cfs
Velocity: (u=Q/A or from stream gage hydraulic geometry	5.77	ft/s

Purlear Creek Reach 2B - Entrainment and Velocity

Velocity Comparison Form

Site:Purlear Creek Reach 2BCrew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Alternation of the second

Input Variable			Output	Variables	
Bankfull Cross Sectional Area (A _{BKF})	6.1	ft ²	Bankfull Mean Depth D _{BKF} = (A _{BKF} /W _{BKF})	0.7	ft
Bankfull Width (W _{BKF})	8.9	ft	Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	7.5	ft
D ₈₄	3	mm	D ₈₄ (mm/304.8)	0.010	ft
Bankfull Slope	0.019	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	0.81	ft
Gravity	32.13	ft/s²	R/D ₈₄ (use D ₈₄ in FEET)	82.31	ft/ft

R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	13.3	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.025	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	7.14	ft/s

u/u* = 2.83+ 5.7lo	gR/D ₈₄	
u* : u*=(gRS) ^{0.5}	0.703	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	9.67	ft/s

Mannings n by Stream Type		
Stream Type		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.44	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	0.41	ft/s

Continuity Equation		
$\mathbf{Q}_{\mathbf{BKF}}$ (cfs) from regional curve or stream gage calibration	15.1	cfs
Velocity: (u=Q/A or from stream gage hydraulic geometry	2.48	ft/s

Purlear Creek Reach 2B - Entrainment and Velocity

Entrainment Calculation Form Sample A

Site: Purlear Creek Reach 2B

Crew: CWE, NW, CD, ARK, PTR, SS

Date: 6-24 to 6-28-2002

* Entrainment calculations are not valid due to excessive bank wasting caused by cattle

hoof shear

Critical Dimensionless Shear Stress:				
$\tau_{ci} = 0.0834 (d_{j}/d_{50})^{-0.872}$ <- 1 Eq. 2 -> $\tau_{ci} = 0.0384 (D_{j}/d_{i})^{-0.887}$				
Variable	Definition			
d _i (mm)	D50 Bed Material (D50 from riffle pebble count)			
d ₅₀ (mm)	Bar Sample D50 or Sub-pavement D50			
D _i (mm)	Largest particle from bar sample (or subpavement)			
Outside Parameters				
	34(d₂/d₅0) ^{-0.872} Variable d _i (mm) d ₅₀ (mm)			

Unknown au_{ci} Critical Dimensionless Shear Stress

Bankf	ull Mean Depth Re	equired for Entrainment of Largest	Particle in Bar Sample:	
$d_r = (\tau_{ci}^* 1.65^* D_i)/S_e$ 1.65=submerged specific weight of sediment				
Value	Variable	Defin	ition	
Unknown	τ_{ci}	Critical Dimensionless Shear	Stress	
0.08	D _i (feet)	Largest particle from bar sample		
0.019	S _e (ft/ft)	Existing Bankfull Water Surface Slope		
#VALUE!	d _r (ft)	Bankfull Mean Depth Required		
0.7	d _e (ft)	Existing Bankfull Mean Depth (from riffle cross section)		
	-	<u>#VALUE!</u>		
Stable (d _e /d	r=1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)	

$S_r = (\tau_{ci}^* 1.65^* D_i)/d_e$ 1.65=submerged specific weight of sediment				
Value	Variable	Defin	nition	
Unknown	τ_{ci}	Critical Dimensionless Shear	Stess	
0.075463	D _i (feet)	Largest particle from bar sample		
0.7	d _e (ft)	Existing Bankfull Mean Depth (from riffle cross section)		
#VALUE!	S _r (ft/ft)	Bankfull Water Surface Slope Required		
		#VALUE!		
Stable (S _e /S _r =	=1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1	

Sediment Transport Validation

23	Largest Particle in Bar Sample D _i (mm)
0.83	Bankfull Shear Stress $\tau_c=\gamma RS$ (lb/ft ²)
0.2	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
100	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Entrainment Calculation Form Sample A

Site:Purlear Creek Reach 3Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

		I Dimensionless Sh		
$\tau_{ci} = 0.08$	34(d;/d ₅₀) ^{-0.872}	<-1 Eq. 2->	$\tau_{ci} = 0.0384 (D_i/d_i)^{-0.887}$	
Value	Variable	Definition		
45	d _i (mm)*	D50 Bed Material (D50	D50 Bed Material (D50 from riffle pebble count)	
7.5	d ₅₀ (mm)	Bar Sample D50 or Sub-pavement D50		
38	D _i (mm)	Largest particle from ba	ar sample (or subpavement)	
		Equation 1		

0.017 τ _{ci}	Critical Dimensionless Shear Stress

* Fraction of size taken from Upstream Reference Reach because existing material severly impacted by sloughing of bank materials from cattle

Bankfi	ull Mean Depth Re	quired for Entrainment of Largest	t Particle in Bar Sample:
	$d_r = (\tau_{ci}^* 1.65^*)$	D _i)/S _e 1.65=submerged specif	ic weight of sediment
Value	Variable	Defin	iition
0.017	τ_{ci}	Critical Dimensionless Shear	Stress
0.124678	D _i (feet)	Largest particle from bar sam	ple
0.007	S _e (ft/ft)	Existing Bankfull Water Surfa	ace Slope
0.514	d _r (ft)	Bankfull Mean Depth Requi	ired
1.3	d _e (ft)	Existing Bankfull Mean Dep section)	oth (from riffle cross
		Degrading	
Stable (d _e /d	r=1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)

	$S_r = (\tau_{ci} * 1.65)$	*D _i)/d _e 1.65=submerged specific	weight of sediment
Value	Variable	Defir	nition
0.017	τ_{ci}	Critical Dimensionless Shear	Stess
0.124678	D _i (feet)	Largest particle from bar sam	nple
1.3	d _e (ft)	Existing Bankfull Mean Depth	n (from riffle cross section)
0.003	S _r (ft/ft)	Bankfull Water Surface Slope	e Required
		Degrading	
Stable (S _e /S _r =	=1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1

Sediment Transport Validation

38	Largest Particle in Bar Sample D _i (mm)
	Bankfull Shear Stress $\tau_c=\gamma RS$ (lb/ft ²)
75	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
0.32	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Velocity Comparison Form

Site:Purlear Creek Reach 3Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Antibus and a straight of the second se

Inpu	ut Variable		Output \	/ariables	
Bankfull Cross Sectional Area (A _{BKF})	13.4		Bankfull Mean Depth D _{BKF} = (A _{BKF} /W _{BKF})	1.3	ft
Bankfull Width (W _{BKF})	10	ft	Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	7.3	ft
D ₈₄	35	mm	D ₈₄ (mm/304.8)	0.115	ft
Bankfull Slope	0.007		Hydraulic Radius (R) (A _{BKF} /WP)	1.83	ft
Gravity	32.13	ft/s²	R/D ₈₄ (use D ₈₄ in FEET)	15.94	ft/ft

R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	9.2	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.029	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	6.43	ft/s

u/u* = 2.83+ 5.7logR/D ₈₄		
u* : u*=(gRS) ^{0.5}	0.642	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	6.21	ft/s

Mannings n by Stream Type		
Stream Type		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.037	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	5.04	ft/s

Continuity Equation		
$\mathbf{Q}_{\mathbf{BKF}}$ (cfs) from regional curve or stream gage calibration	74	cfs
Velocity: (u=Q/A or from stream gage hydraulic geometry	5.52	ft/s

Entrainment Calculation Form Sample A

Site:Purlear Creek Reach 4Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

<-1 Eq.		$\tau_{ci} = 0.0384 (D_i/d_i)^{-0.887}$ Definition
150 Bed Mat		Definition
50 Red Mat		
D50 Bed Material (D50 from riffle pebble count)		
Bar Sample D50 or Sub-pavement D50		
argest partic	cle from	n bar sample (or subpavement)
-	argest parti	·····

0.027 au_{ci} Critical Dimensionless Shear Stress

* Eliminated silt/clay from pebble count as cattle bank erosion influence which caused an adjustment of value from 0.5 to 1.1

Bankf	Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample:					
	$d_r = (\tau_{ci}^* 1.65^* C_{ci})^2$	D _i)/S _e 1.65=submerged specif	lic weight of sediment			
Value	Variable	Defin	nition			
0.027	τ _{ci}	Critical Dimensionless Shear	Stress			
0.029529	D _i (feet)	Largest particle from bar sam	nple			
0.011	S _e (ft/ft)	Existing Bankfull Water Surfa	ace Slope			
0.119	d _r (ft)	Bankfull Mean Depth Requi	ired			
0.5	d _e (ft)	Existing Bankfull Mean Dep section)	oth (from riffle cross			
		Degrading				
Stable (d _e /d	l,=1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)			

	$S_r = (\tau_{ci} * 1.65)$	*D _i)/d _e 1.65=submerged specific v	weight of sediment	
Value	Variable	Defin	ition	
0.027 $ au_{ci}$ Critical Dimensionless Shear Stess				
0.029529 D _i (feet) Largest particle from bar sample				
0.5 d _e (ft) Existing Bankfull Mean Depth (from riffle cross section				
0.003	S _r (ft/ft)	Bankfull Water Surface Slope	e Required	
		Degrading		
Stable (S _e /S _r	=1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1)	

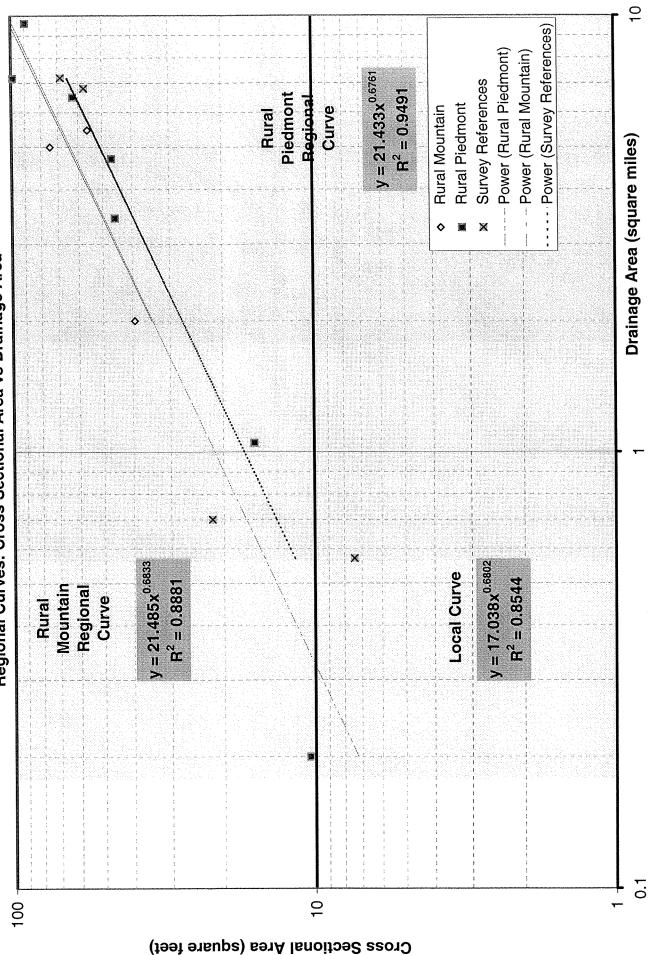
Sediment Transport Validation

9	Largest Particle in Bar Sample D _i (mm)
	Bankfull Shear Stress $\tau_c = \gamma RS$ (lb/ft ²)
35	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
0.9	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Velocity Comparison Form

Site:Purlear Creek Reach 4Crew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

Inpu	ıt Variable	Output Variables			
Bankfull Cross Sectional Area (A _{BKF})	3.5	f+~	Bankfull Mean Depth D _{BKF} = (A _{BKF} /W _{BKF})	0.5	ft
Bankfull Width (W _{BKF})	7.4		Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	6.5	ft
D ₈₄	5	mm	D ₈₄ (mm/304.8)	0.016	ft
Bankfull Slope	0.011	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	0.54	ft
Gravity	32.13	ft/s ²	R/D ₈₄ (use D ₈₄ in FEET)	33.06	ft/ft


R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	11.25	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.025	ft ^{1/6}
Velocity: from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	4.16	ft/s

u/u* = 2.83+ 5.7lo	gR/D ₈₄	
u* : u*=(gRS) ^{0.5}	0.438	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	5.03	ft/s

, Mannings n by Stream Type		
Stream Type		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.036	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	2.89	ft/s

Continuity Equation		
$\mathbf{Q}_{\mathbf{BKF}}$ (cfs) from regional curve or stream gage calibration	23.2	cfs
Velocity : (u=Q/A or from stream gage hydraulic geometry	6.63	ft/s

Appendix E: Regional and Local Hydrological Curves

Regional Curves: Cross Sectional Area vs Drainage Area

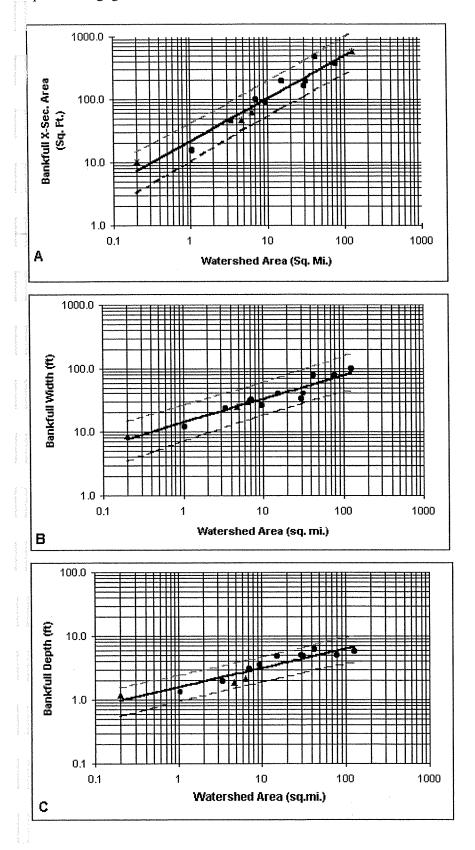
Purlea Creek Regional Curves

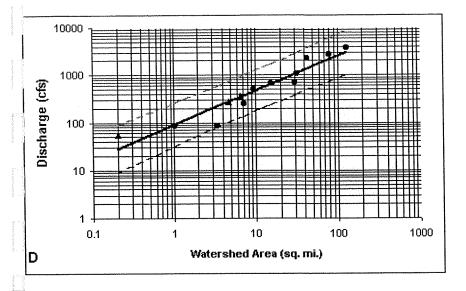
Appendix E

	and a second second	. [
		TEACHES
Andrea de la constante de	attate and di	stream
and elsi spin den egen	transpiller and the	ungagea
A provincial a provincial of the	Second to second	and
Alexandria ender eine eine eine eine eine eine eine ei	Annual and Adding	for gageo
and should be added for the	Department of the South of South of South of South Sou	lyses
- Naki maten ages	and the strend	cy ana
	Accession of the PAN	frequen
University and	the sector sector	flood
	1	and
Sector decision		mmary,
In Section Barbarata		v sui
	100 million (100 million)	surve
proprieded to be applied on the second of the test of the order of the second of the s	Arriver and and arriver	reometry,
$\mathcal{M}(\mathcal{M},\mathcal{M},\mathcal{M}) = \mathcal{M}(\mathcal{M},\mathcal{M})$		1: Hydraulic geometry, survey summary, and flood frequency analyses for gaged and ungaged stream reaches.
$\{g_i,g_i,g_j\}_{i \in \mathbb{N}}$ we write $i \in \{1,\dots,n\}$	Annual and the second	1: HV

		Drainade	Stream	Bankfull	Bankfull	Bankfull	Bankfull	Water	Return	Exceedence
	noi					<u></u>	Mean	Surface		
Name		Area	Type	Discharge	Xsec	Width	 		Interval	Probability
	8				Area		Deptn	edote		10/1
		(mi ²)	(Rosgen)	(cfs)	(ft ²)	(ft)	(ft)	(ft/ft)	(Years)	(%)
Sal's Branch	Reference Reach	0.2	E4	55.4	10.4	8.7	1.2	0.0109	n/a	n/a
Humpy Creek	02117030	1.05	ES	83.0	15.8	12.0	1.3	0.0060	1.7	59
Dutchmans	02123567	3.44	C5	85.1	45.6	23.5	1.9	0.0170	1	100
Mill Creek	Reference Reach	4.7	E4	277	46.7	24.5	1.9	0.0080	n/a	n/a
Upper Mitchell River	Reference Reach	6.5	B4C	356	62.5	29.2	2.1	0.0095	n/a	n/a
Norwood Creek	0214253830	7.18	ED	253.7	98.8	32.0	3.1	0.0008	1.1	91
North Pott's Creek	02121180	9.6	с Ц	507.2	89.6	25.4	3.5	0.0012	1.7	20
Tick Creek	02101800	15.5	ы	655.3	194	40.5	4.8	0.0005	1.3	77
Moon Creek	02075160	29.9	с Ш	708.8	162	33.0	4.9	0.0015	1.8	56
	02144000	31.8	БЪ	1041	195	40.0	4.9	0.0010	1.4	71
	02114450	42.8	GS	2236	469	77.5	6.1	0.0018	1.4	71
Mitchell River	02112360	78.8	υ	2681	377	77.0	4.9	0.0030	1.6	63
11	02113000	128	C3	3687	578	101	5.7	0.0023	1.4	71

Equations

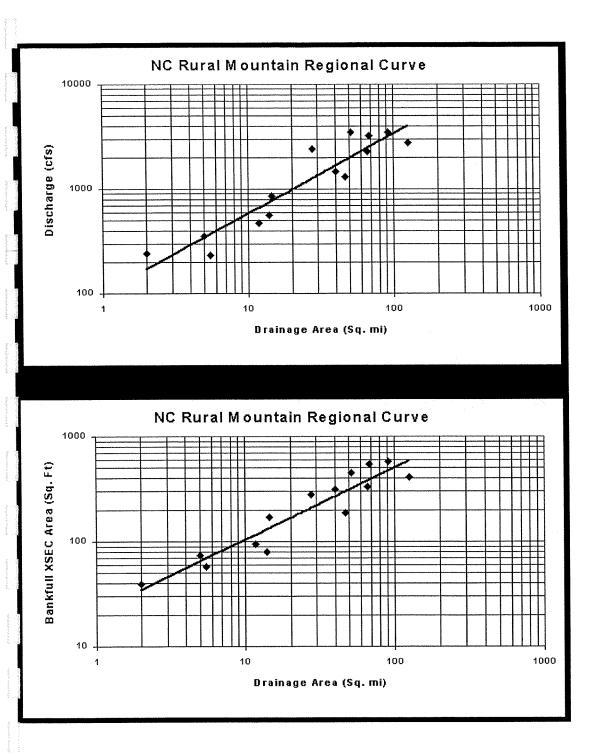

Bankfull Cross-Sectional Area vs. Drainage Area: $y = 21.43x^{0.68}$

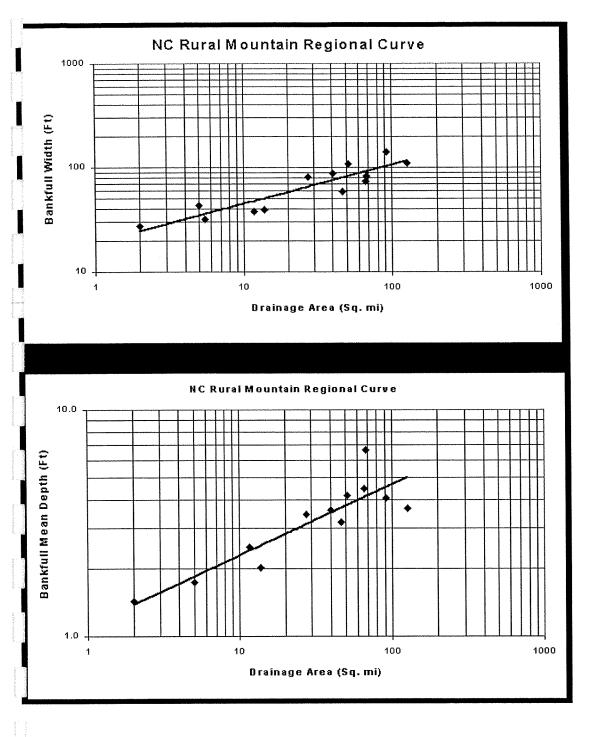

Bankfull Discharge vs. Drainage Area: $y = 89.04x^{0.72}$

Bankfull Width vs. Drainage Area: $y = 11.89x^{0.43}$

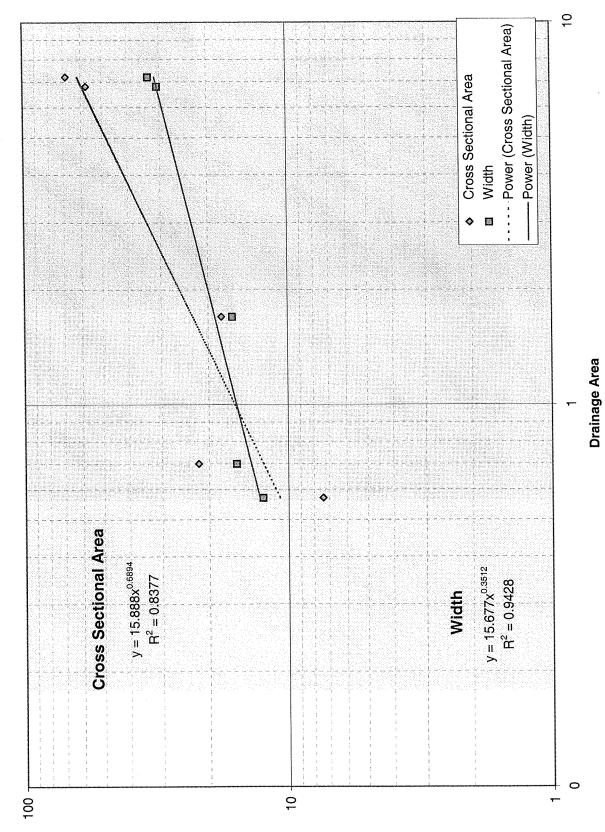
Bankfull Mean Depth vs. Drainage Area: $y = 1.5x^{0.32}$

Bankfull hydraulic geometry relationships for rural Piedmont North Carolina Streams. The four graphs represent: a) cross sectional area, b) width, c) depth, and d) discharge. The circles represent gage stations and the triangles represent ungaged streams. The outside dashed lines are the 95% confidence intervals for all the data points.


able of Regional Curve data for the Mountain region:


2 2 1000 Later	tream Name	Gage Station ID		Drainage Area (mi2)	Bankfull Discharge (cfs)	Bankfull Xsec Area (ft2)	Bankfull Width (ft)	Bankfull Mean Depth (ft)	Water Surface Slope (ft/ft)	Return Interval (Years)	Exceedence Probability (%)	Mean 1 Rainfa (Inches
ALC: NO VERIO	rrench Broad at Rosman	3439000		67.9	3226	544.9	82.4	6.6	0.0009	1.3	0.77	98
	Mills River	3446000	C4	66.7	2263	333	74.3	4.5	0.0035	1.9	0.53	90
diament and)avidson River	3441000	B4c	40.4	1457	316	87.6	3.6	0.004	1.1	0.91	94
El marten	Satheys Creek near Brevard	344000	B4c	11.7	470	94.2	38	2.5	0.013	1.67	0.60	94
i est	West Fork of the Pigeon	3455500	B3c	27.6	2433	277.9	80.6	3.4	0.0077	1.10	0.91	70
and a failed	ast Fork Pigeon River	3456500	В	51.5	3450	446.3	107	4.2	incomplete	1.59	0.63	70
N ² el):	Watauga River	3479000	B4c	92.1	3492	572	140.3	4.1	0.0033	1.25	0.80	56
a'.	Big Laurel	3454000	B4	126	2763	406	110.8	3.7	0.0045	1.59	0.63	42
an sub-trap to the	ast Fork Hickey Fork Treek	n/a	B3a	2.0	242	39.3	27.4	1.4	0.045	n/a	n/a	48
	Cold Spring Creek	n/a	B4	5.0	352	74.4	42.9	1.7	0.025	n/a	n/a	50
100	Caldwell Fork	n/a	В	13.8	560	79.3	39.4	2.0	0.02	n/a	n/a	74
underson	Cataloochee	3460000	B4c	46.9	1320	186.9	58.7	3.2	0.008	1.60	0.63	74
Ξ.	Bee Tree	3450000	B3	5.46	231.5	56	32.1	1.7	incomplete	1.85	0.54	
and-wave	North Fork Swannanoa	344894205	C3	14.5	855.7	170.6	69.3	2.5	incomplete			

Equations for the Regional Curve Relationships:


Bankfull Cross-Sectional Area vs. Drainage Area: $y = 21.61x^{0.68}$ Bankfull Discharge vs. Drainage Area: $y = 100.64x^{0.76}$ Bankfull Width vs. Drainage Area: $y = 19.05x^{0.37}$ Bankfull Mean Depth vs. Drainage Area: $y = 1.11x^{0.31}$

* where x = drainage area

.

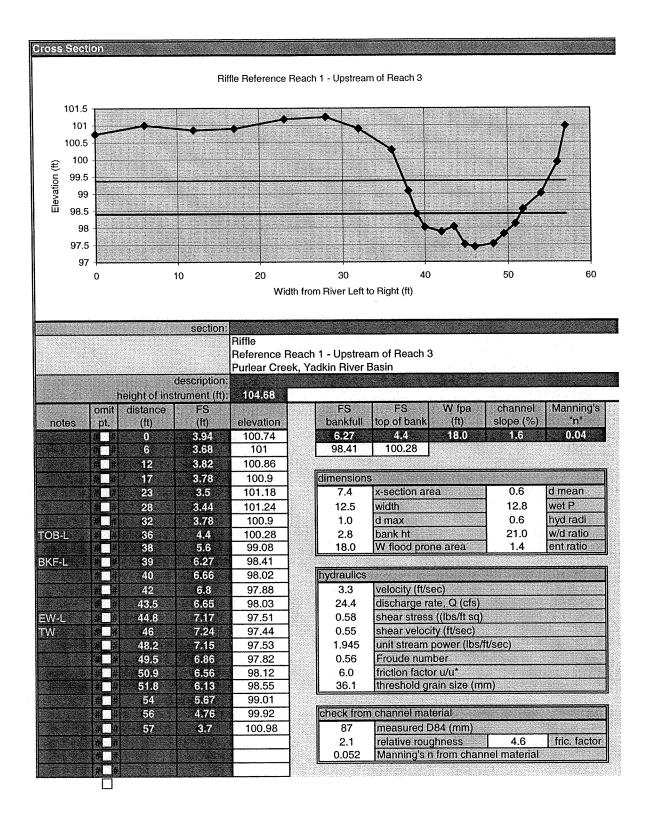
9. Sector of the sector of

All and a second

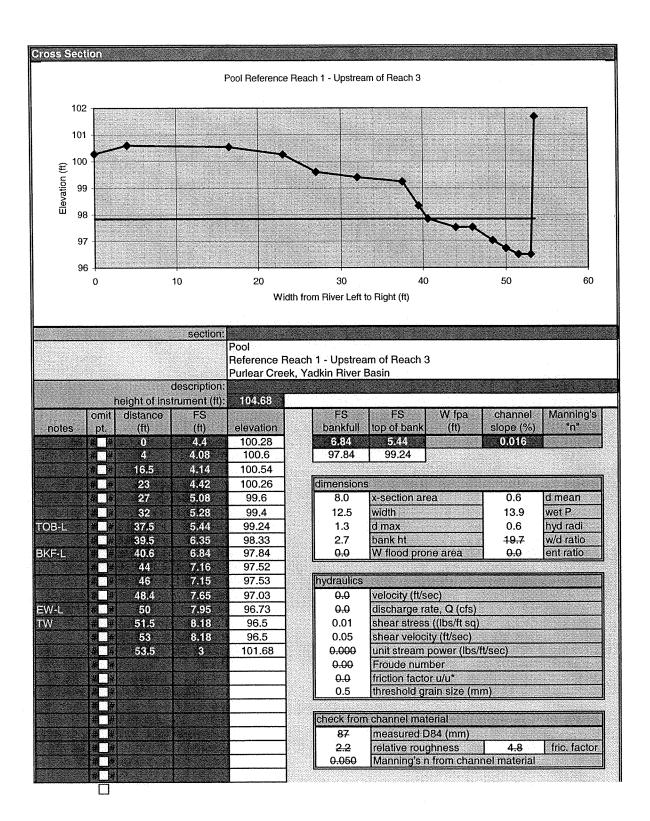
Purlear Creek Regional Curves

Appendix E

Cross Section


Appendix F: Reference Reaches

Purlear Creek Upstream Reference Reach - Cross Section


And the first sector of the		
AND		
An example of the second s		
The second se		
An Address Address and Address a	transferantes	
2 Dauganten 118		
An de de la delarge - 45.20 (de est	get with the second	
garantizes and controls and grant and and an of an and a	large stress with the second stress from the second	
$\mathcal{M} = \{ p_i \in \mathcal{M} : i \in \mathcal{M} $		
$\{p_{ij}^{(1)}(x):=p_{ij}^{(2)}(x)=f_{ij}(x)=f_{ij}(x)$		
frage character for the test		
مغورهما المالحا المالم فر		
and and an and an and an and an and an		
the state of strength of the state		

Reference Reach		1		Shide
	Reference Reach 1 - Ups Purlear Creek, Yadkin Ri		each 3	
Location: -	,	ver Dasin		
Latitude:				
Longitude:				
County:				
Date:	June 26, 2002			
Observers:	CWE, NW, CD, ARK, PT	R, SS		
	- /			
Channel Type:				
Drainage Area (sq mi): (Dimension	0.57			
		typical	min	max
Riffle:	x-area bankfull	7,4		
	width bankfull	11.9		
	hydraulic radius	0.6	-	
	max depth	1.0 2.8		
	bank ht width flood prone area	12.5		
	mean depth	0.62		
Pool:	x-area pool	8		
	width pool	12.5		
	hydraulic radius	0.6		
	max depth pool	1.3	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
	bank ht	2.7		
Run:	x-area run			
	width run			-
	hydraulic radius			
	max depth run			
	bank ht			
Glide:	x-area glide			
	width glide			
	max depth glide			
Dimensionless Ratios:	1	typical	min	max
	Width/Depth Ratio Entrenchment Ratio	19.1 1.1		
	Riffle Max Depth Ratio	1.1		
	Pool Area Ratio	1.1		
	Pool Width Ratio	1.1		
	Pool Max Depth Ratio	2.1		
	Bank Height Ratio	2.7		
	Run Area Ratio			
	Run Width Ratio			
	Run Max Depth Ratio			
	Glide Area Ratio			
	Glide Width Ratio			
	Glide Max Depth Ratio			
Hydraulics:	abarra la la devi	riffle	pool	run
	channel slope (%)	1.600		
1	discharge rate, Q (cfs)	61.3 8.3	7.7	
	UNIAAit /44/AAAI	0.3	1.1	
shaar stross	velocity (ft/sec)		1 298	
shear stress	@ max depth (lbs/ft sq)	0.998	1.298	
shear stress	<pre>@ max depth (lbs/ft sq) shear stress (lbs/ft sq)</pre>	0.998 0.599	0.599	
shear stress	@ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec)	0.998 0.599 0.556	0.599 0.556	
	@ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec)	0.998 0.599 0.556 61.2	0.599 0.556 61.2	
	@ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) tream power (lbs/ft/sec)	0.998 0.599 0.556	0.599 0.556	 61.2
	@ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) tream power (lbs/ft/sec) relative roughness	0.998 0.599 0.556 61.2 5.143	0.599 0.556 61.2 5.143	 61.2 5.143
unit s	@ max depth (lbs/ft sq) shear stress (lbs/ft sq) shear velocity (ft/sec) stream power (lbs/sec) tream power (lbs/ft/sec)	0.998 0.599 0.556 61.2 5.143 2.2	0.599 0.556 61.2 5.143 2.2	 61.2 5.143

Purlear Creek Upstream Reference Reach - Cross Section

Purlear Creek Upstream Reference Reach - Cross Section

Appendix F

250 A x-section ELEV ELEV ł 1 ELEV TOB 100.64 99.44 96.62 98.05 ЯЯЛ
 MY-5
 MY-5

 95.21
 96.55

 95.23
 96.55

 95.23
 96.12

 95.23
 96.12

 95.04
 96.12

 94.1
 94.95

 94.08
 94.75
 • ELEV 98.35 97.92 Ş 97.03 96.46 96.55 98.26 1 + 200 ELEV water srf 97.76 TOB 97.22 97.33 96.58 96.78 96.6 96.75 96.39 95.67 95.66 95.66 x 94.96 93.95 94.73 94.86 93.92 93.45 water srf ELEV bed 96 96.56 96.21 95.47 95.36 95.36 97.49 AZ azimuth peq------Reference Reach 1 - Upstream of Reach 3 Purlear Creek, Yadkin River Basin ו βЗ 150 Sa Channel Distance (ft) 6.63 4.88 FS 103 4.04 5.24 • 82 - X.a 6.33 6.76 7.26 7.65 8.22 5.38 6.55 6.75 6.42 **4,95** 8.13 ••• 9 depth water 0.27 0.11 0.2 0.25 0.5 0.18 FS bed 8.54 7.55 6.77 6.77 8.64 7.58 8.05 7.46 8.1 8.68 8.47 8.47 9.21 9.32 9.32 8.73 2.64 30'2 104.68 104.5 101.5 101.5 101.5 101.5 101.5 101.5 101.5 107.16 107.16 107.16 107.16 107.16 107.16 107.16 104.68 • 8 ÷ 50 4.68 99.9 ⊲ 60 100 123 188 200 station × 433 33 135 3 6 6 8 5 5 **5** 000 • 18 e 23 1 1 8 e 13 13 dista cross section ⊲ Riffle x Pood 0 66 86 36 33 6 ŝ 67 2 5 End Rif. Cent. Pl End Pl Head Rif. End Rif. Run Head Gl. Head Rif Mid Rif End Rif. Head Rif. Head Rif. End Rif. notes (ft) noitevel3 3.8 0.4 тах мах 1 | 0.348 $[\] \ [\] \]$ 37 37 1.6 0.1 Reference Reach 1 - Upstream of Reach 3 Purlear Creek, Yadkin River Basin uim unu 25 23 191192111 [++++]Danktul width (t) 11.9 maander levit (t) 11.9 amplitude (t) 73 amplitude (t) 73 actual (t) 20.6 arc angle (actuals) straight length (t) 20.6 valley length (t) 200 valley length 185 typical 15 29 0.17 2.7 typica 37 30 8 | | 0.18 | | 25 8 | | 0.18 6.2 8.4 1 7 hanktul width (t) pooleois spacing (t) nitile length (t) nitile length (t) guide length (t) guide length (t) channel slope (s) inun slope (s) nun slope (s) maassured valley slope (s) Riffle Length Ratio Run Stope Ratio Run Stope Ratio Run Stope Ratio Sinuosity Miaander Width Rauo Amplitude Ratio Meander Length Ratio Straight Length Ratio Radius Ratio Channel Type: B4c Drainage Area (sq mi): 0.57 ence Reach

dentra bitanta

Purtear Creek Upstream Reference Reach - Profile

Appendix F

bar sample Hints 11 I 1 ł ł ł 1 1 ł 0.00 0.00 glide ł 1 I 1 I 0 0 Stream: Reference Reach 1 - Upstream of Reach 3 Watershed: Purlear Creek, Yadkin River Basin 0.000 0.00 ł 1 ł E 1 ļ 0 0 20% 70% 0% Date: June 26, 2002 Observers: CWE, NW, CD, ARK, PTR, SS #N/A 0.23 %0 bod с. О 6 22.56 0% 49% 0% 0% 4.907 50.6 riffle 99 123 0.354 3.06 16.8 87 28% 37% 29% total 118 6% %0 Longitude: ---County: Wilkes Channel Type: B4c Drainage Area (sq mi): 0.57 Channel Materials ł % Gravel % Location: -Latitude: -% Silt/Clay D16 D35 D50 D84 D95 Largest of Bar Sample % Boulder % Bedrock Reference Reach

· · · ·

general constant deslegations and

Upstream Reference Reach - Materials

Purlear Creek

Percent Run: Percent Run: Percent Gide: Percent Gide: Total # # Percent Gide: Percent Actin River Basin 10 # # Purlear Creek, Yadkin River Basin 10.0 # # Purlear Creek, Yadkin River Basin 10.0 # # Purlear Creek, Yadkin River Basin 10.0 # # Purlear Creek, Yadkin River Basin 110.0 # # Purlear Creek, Vadkin River Basin 1100 # # Purlear Creek, Vadkin River Basin 1100 # # Purlear Creek, Vadkin River Basin 1100 # # Purlear Creek, Vadkin River Basin 111 # # Purlear Creek, Vadkin River Basin 111 # # Purlear Creek, Vadkin River Basin 113 # # Purlear Creek, Vadkin River Basin 114.6 # # Purlear Creek, Vadkin River Basin 114.6 # # Purlea	Weighted Pebble Count	nt													
30 Percent Glide: Pebble CC Size Range (mm) Total # # 0.062 6.0 # # 0.13 0.25 4.0 # # 0.13 0.25 1.0 # # 0.13 0.25 1.0 # # 0.5 1 3.0 # # 0.5 1 3.0 # # 0.5 1 3.0 # # 0.5 1 3.0 # # 0.5 10.0 # # 100% 1 2 9.8 # # 1 3.0 # # 0.0 2 4 1.9 # # 6 8.8 # # 0.0 1 16 22 3.9 22 32 2.9 # # 90 128 12.6 0.0 180 256 0.0 0.0 322 512 0.0 0.0 180	Percent Riffle:	02	Percent	Run:											
Size Range (mm) Total # # # Reference 0 0.062 6.0 # # Purlear Ci 0.13 0.25 1.0 # # Note: Purlear Ci 0.13 0.25 1.0 # # Note: Purlear Ci 0.13 0.25 1.0 # # Note: Purlear Ci 0.13 0.25 10.0 # # Note: Purlear Ci 0.5 1 3.0 # # Note: Purlear Ci 0.5 1 2 9.8 # # Note: Purlear Ci 2 4 1.9 # # 0.0 90% Purlear Ci Purlear Ci 2 45 5.9 # # 100% Purlear Ci Purle	Percent Pool:	30	Percent G			Peb	ble Cour	h,							
0 0.062 6.0 # # Purlear Ci 0.13 0.25 4.0 # # Note: 0.13 0.25 1.0 # # Note: 0.13 0.25 10.0 # # 0.5 1 3.0 # # 0.5 1 3.0 # # 0.5 1 3.0 # # 2 4 1.9 # # 90% 1 1 2 9.0 # # 90% 1 1 1 2 3.9 # # 90% 22 32 2.9 # # 90% 32 45 8.0 90%		Size Range (mm)	Total #			Ref	erence F	L	ostream of	Reach 3					
0.062 0.13 1.0 # # Note: 0.13 0.25 1.0 # # Note: 0.5 1 3.0 # # Note: 0.5 1 3.0 # # 90% 0.5 1 3.0 # # 90% 2 4 1.9 # # 90% 4 6 4.9 # # 90% 1 1 2 9.9 # # 90% 1 1 2 9.9 # # 90% 1 1 1 2 3.9 # # 90% 1 1 1 1 1 0.0 22 32 2.9 # # 0.0 32 5 0.0 1 0.0	sitt/clay					Purl	lear Cree	sk, Yadkin F	River Basin						
0.13 0.25 4.0 # # Note: 0.5 1 3.0 # # # $100%$ 1 2 9.8 # # # $100%$ 2 4 1.9 # # # $90%$ 4 6 4.9 # # # $90%$ 6 8 1.0 # # # $90%$ 6 8 1.0 # # # $90%$ 6 8 1.0 # # # $90%$ 6 8 1.0 8 1.0 6 8 1.0 8 $80%$ 6 8 1.0 8 $80%$ 6 8 1.0 8 $80%$ 61 22 32 2.9 $80%$ 64 80 14.6 $80%$ $90%$ 110 128 12.6 $90%$ $90%$ 128 128 12.6	very fine sand					1									
0.25 0.5 10.0 # # $100%$ $= 110$ 2 4 1.9 $= 88$ $= 110$ $= 88$ $= 110$ $= 80%$ $= 11000%$ $= 1100%$ $= 110%$	fine sand			#		Note:									
0.5 1 3.0 # # $100%$ $100%$ $110%$ 2 4 1.9 $8%$ 110 $8%$ $100%$ $90%$ 4 6 4.9 $8%$ $80%$ $90%$ $90%$ 6 8 1.0 $8%$ $80%$ $90%$ $90%$ 6 8 1.0 $8%$ 1.0 $8%$ 1.0 8 11 2.9 $8%$ $80%$ $90%$ $90%$ 11 16 2.2 3.9 $8%$ $80%$ $90%$ 12 11 2.9 $8%$ $80%$ $90%$ $90%$ 12 12.6 14.6 $8%$ $110%$ $90%$ $90%$ 128 12.6 14.6 $8%$ 10.0 $8%$ $90%$ 128 12.6 0.0 14.6 $90%$ $90%$ $90%$ 128 12.6 0	medium sand			# #											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	coarse sand	0.5 1	3.0	#			ď	abble Count	, Referenc	se Reach 1 - U	pstream of Re	each 3			
2 4 1.9 # # 90% </td <td>very coarse sand</td> <td>1 2</td> <td>9.8</td> <td>#</td> <td></td> <td></td> <td>111111</td> <td></td> <td>L THE PARTY</td> <td>1.1.1.1.1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	very coarse sand	1 2	9.8	#			111111		L THE PARTY	1.1.1.1.1.1					
4 6 4.9 # # 900 600 </td <td>very fine gravel</td> <td></td> <td>1.9</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	very fine gravel		1.9	#						-		1			
6 8 1.0 # # 80% 8 11 2.9 # # 70% 11 16 2.2 3.9 # # 16 22 3.9 # # 60% 22 32 45 5.9 # # 45 64 8.8 # # 90% 90 12.6 # # 0.0 128 12.6 1.9 # # 128 12.6 1.9 # # 128 12.6 0.0 # # 128 10% 0.0 0.0 128 100 # # 128 10% 0.0 128 10% 0.0 128 10% 0.0 128 10% 0.0 180 256 0.0 362 512 0.0 1024 2048 0.0 2048 4096 0.0 2048 205 0.0 2048 205 0.0 2048 0.0 0.0 2048 205 0.0 2048 0.0 10 2048 0.0 10 2048 0.0	fine gravel		4.9	#		-	11111	1 1		1111			1111	1 1 1	
8 11 2.9 # # 70% 71% 70% 11 16 22 3.9 # # 60% <td>fine gravel</td> <td></td> <td>1.0</td> <td>#</td> <td></td> <td>80% + 1</td> <td></td> <td>1</td> <td>X</td> <td>11111</td> <td>1</td> <td></td> <td>11111</td> <td></td> <td></td>	fine gravel		1.0	#		80% + 1		1	X	11111	1		11111		
11 16 4.9 # # 60% 61% 22 3.9 # # 60% 61% 61% 22 3.2 2.9 # # 60% 61% 61% 22 32 2.9 # # 60% 61% 61% 32 45 64 90 14.6 # # 60% 90 12.8 12.6 # # 0.0 0.0 128 12.6 1.9 0.0 # # 0.0 180 256 0.0 # # 0.01 0.1 180 256 0.0 # # 0.01 0.1 180 256 0.0 # # 0.01 0.1 181 256 0.0 # # 0.01 0.1 1024 2048 0.0 # # 0.0 0.1 2048 4096 0.0 # # 0.0 0.0 2048 2048 0.0 168 178 188 Veighted Count: 100 168 168 188 148	medium gravel		2.9	# #		20%		6					1 1 1 1 1		1111
16 22 3.9 # # The 22 32 2.9 # # 50% 22 32 2.9 # # 50% 32 45 64 90 14.6 # # 90 12.8 12.6 # # 0.0 128 12.6 1.9 1.9 0.0 128 12.6 0.0 # # 0.01 128 12.6 0.0 # # 0.01 128 256 0.0 # # 0.01 128 12.12 0.0 # # 0.01 128 256 0.0 # # 0.01 128 2512 0.0 # # 0.01 1024 2048 0.0 # # 0.01 2048 4096 0.0 # # 0.0 2048 2048 0.0 # # 0.0 2048 0.0 # # 0.0 1.4 Veighted Count: 100 1.5 1.8 1.8	medium gravel			#		50%	1111		1 1 1 1						1111
22 32 2.9 # # T 0.0 32 45 5.9 # # T 0.0 45 64 8.8 # # T 30% 90 128 12.6 # # 0.0 128 12.6 1.9 # # 0.0 128 12.6 0.0 # # 0.0 128 12.6 0.0 # # 0.0 180 256 0.0 # # 0.0 256 362 0.0 # # 0.0 256 362 0.0 # # 0.0 362 512 0.0 # # 0.0 512 1024 0.0 # # 0.0 2048 4096 0.0 # # 0.0 2048 2048 0.0 # # 0.0 2048 4096 0.0 # # 0.0 2048 0.0 # # 0.0 0.0 2048 0.0 # # 0.0 0.0 2048	coarse gravel			#	ner	/002	11111	1	1111				11111		1111
32 45 5.9 # # 14.6 # # 14.6 # # 14.6 # # 13.0% 14.6 # # 13.0% 14.6 # # 13.0% 14.6 # # 13.0% 14.6 # # 13.0% 12.6 13.0% 13.0% 13.0% 13.0% 13.0% 10.0%	coarse gravel			#	11 -			1	1 1111		<u> </u>				
45 64 8.8 # # 11 30% 64 90 14.6 # # 10% 90 128 12.6 13% # # 128 180 1.9 # # 0% 180 256 0.0 # # 0.01 180 362 512 0.0 # # 512 0.0 # # 0.01 0.1 512 0.0 # # 0.01 0.1 512 1024 0.0 # # 0.01 512 1024 0.0 # # 0.0 2048 4096 0.0 # # 512 0.0 Weighted Count: 100 # # 512 0.0 148 695	very coarse gravel			# #	ıəu	40%		~				-			
64 90 14.6 # # feet 20% 90 128 12.6 # # 0.0 128 12.6 1.9 # # 0.0 180 256 0.0 # # 0.0 256 362 512 0.0 # # 512 1024 0.0 # # 1024 20.0 # # 2048 0.0 # # 1024 20.0 # # 1024 0.0 # # 2048 0.0 # # 1024 0.0 # # 1024 0.0 # # Veighted Count: 100 16.8 100 16.8 16.8 18.4	very coarse gravel				<u> </u>	30%									
90 128 12.6 # # 90 128 12.6 128 180 1.9 # # 0.0 # # 180 256 0.0 # # 0.0 256 362 512 0.0 # # 362 512 0.0 # # 512 1024 0.0 # # 1024 20.0 # # 2048 0.0 # # 1024 20.0 # # 2048 0.0 # # 1024 0.0 # # Veighted Count: 100 # # 0.0 16 168	small cobble	64			tna	1 1 /000						-			
128 180 1.9 # # 0.1 1.0% 180 256 0.0 # # 0.01 0.1 1 256 362 0.0 # # 0.01 0.1 1 362 512 0.0 # # 0.01 0.1 1 512 1024 0.0 # # 0.01 0.1 1 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 512 0.0 2048 0.0 # # 512 0.0 2048 0.0 # # 512 0.0 1024 0.0 # # 512 0.0 102 10.0 # # 512 0.0 0.1 10 # # 512 0.0 10 10 16 0.5 0.4 0.16 10 16 0.5 118	medium cobble	06		#	stc.	CO 00	11111	1	1 1 1 1		•	•	111111		
180 256 0.0 # # 0% 1 1 256 362 0.0 # # 0.01 0.1 1 362 512 0.0 # # 0.01 0.1 1 512 1024 0.0 # # 2048 0.0 # # 1024 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 512 1024 2048 0.0 # # Weighted Count: 100 # # 512 050 084 095 511V(Ia)	large cobble	128		# #	ы	10%						-	11111	1 1	111
256 362 0.0 # # 0.01 0.1 1 362 512 0.0 # # Particle Size (mm) ••••••••••••••••••••••••••••••••••••	very large cobble	180													
362 512 0.0 # # 512 1024 0.0 # # 1024 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 0.0 # # 5ize percent less than (mm) Weighted Count: 100 16 035 0.55 150 184 095 0.54 3.06 16.8 87	small boulder			#		0.01	0	-	•	10	-	100	1000	0	10000
512 1024 0.0 # # Particle Size (min) 1024 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 2048 0.0 # # 0.0 # # 5ize percent less than (mm) 0.0 16 035 050 0.0 0.54 3.06 16.8	small boulder			# #			()								
1024 2048 0.0 # # 2048 4096 0.0 # # 2048 0.0 # # Veighted Count: 100 # Veighted Count: 100 16 D35 D16 D35 D50 D84 D16 0.5 148 8%	medium boulder					Particle SI	ze (mm)	inter of the second sec	ative Dare		Darcant Itam	- Aiffle			- Glide
2048 4096 0.0 # # 0.0 # Size percent less than (mm) Weighted Count: 100 D16 D35 D50 D84 D95 7111 Dotition Count: 100 0.54 3.06 16.8 87 118	large boulder								ומווגב ו בוס				1		
Weighted Count: 0.0 # Size percent less than (mm) Weighted Count: 100 D16 D35 D50 D84 D95 Total Doctor 100 0.51 3.06 16.8 8.7 118	very large boulder														
100 D16 D35 D50 D84 D95 100 110 110 118 118 118 118 118 118 118	bedrock		0.0	#		Size percent	less tha	n (mm)			Percent by substrate type	substrate	type		
1 100 1 0 251 1 3 06 1 16 8 1 87 1 118 1		Weighted Col			D16	_	D50	D84	D95	silt/clay	sand gra		cobble	boulder	bedrock
1 0.0 1 0.00 1 0.00 1 10.00 1 10.00 1	Tru	True Total Particle Count:	unt: 102		0.354		16.8	87	118	%9	28% 3.	37%	29%	%0	0%

Purlear Creek Upstream Reference Reach - Materials

Alternation in the start of the second se

Appendix F

Purlear Creek Upstream Reference Reach - Materials

.

Territoria Territoria Matalogia Americant

				- -	Heach 3														100 1000 1000					trate type	cobble boulder be	49% 42% 0% 0%
					Riffle Pebble Count, Reference Reach 1 - Upstream of Heach 3				1 1 1 1 1	×						•	* * * *				ĭ ₽			Percent by s	_	10% 49
Reach 3					ence Reach				1 1 1 1 1										10	(silt/clay	%0
Reference Reach 1 - Upstream of Reach 3	Purlear Creek, Yadkin River Basin				Count, Refer	inter e		1 1 1 1 1											•	Particle Size (mm)					D95	123
Beach 1 -	reek, Yadkir				fle Pebble (4 1	+ + +	1 1 11		1	-						11		0.1	Parti	5			han (mm)	D84	0 0
Reference	Purlear C	-			Ĩ			1 1 1 1 1									11111							Size percent less than (mm)	D50	50.6
			Note:			100%	- %06	80%	2(0)	~^/	60% +	50% –	40%	30% +	7000	2027		-+ %0	0.01					Size p	D35	00 56
	#	#	#	#	#	#	#	#		₩ ₩	# 161	# #		#		#	#	#	#	#	#	#	#	#	D16	7 00 Y
Count	*	*	#	#	*	7]#	2 # :	5 #	+	3	4	3	3	5 #	#	15 #	13 #	# 7	*	#	#	#	#	#	#	70
	62	0.13	0.25	0.5		2	4	6	8	11	16	22	32	45	64	60	128	180	256	362	512	1024	2048	4096		1.1.0.00
Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	6	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048		Hotel Detiols Contrati
Material	Т	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	bedrock	

Purlear Creek Upstream Reference Reach - Materials

a na series de la composition de la composition

	Purlear 	Purtear
100% 100% 100% 100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%
70%	70%	# # # Than 70% + + + + + + + + + + + + + + + + + + +
ET 50%	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #
	30%	Perce 20%
10% 10%		# 10%
.01 0.1	# 0.01 0.1	# 0.01 0.1
Particle Size (mm)		##
Size percent less than (mm	#	#
D16 D35 D50	D35	D16 D35
#N/A 0.23 0.3	0.23	0.23

						1											A LITTLE				10000		 Percent Item 		┟	er	00/ 1 /0/
					c	ן ני		-					11111			1111					1000		e Percent		te type	cobble	200
					4 (Pebble Count, Reference Reach 1 - Upstream of Heach 3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111	1 1 1 1 1		1 1 1 1	11111	1 1 1 1	1111			•	•	100	2	Cumulative Percent		Percent by substrate type	gravel	,000
					-	1 - Upstrea							 			-						L	T]		Percer	sand	1000
	of Reach 3	in		tion		nce Reach	1111111														, ç	2				silt/clay	
	Reference Reach 1 - Upstream of Reach 3	Purlear Creek, Yadkin River Basin		Entrainment PB at Riffle X-Section	1	nt, Referei	1111			1 1 1		- -	-							•	- +	-	ize (mm)			D95	
unt,	Reach 1 -	eek, Yadkii		ent PB at F		ebble Cou				1 1					1 4 4					•			Particle Size (mm)		an (mm)	D84	
Pebble Count,	Reference	Purlear Cr	1	Entrainme		<u>ь</u>			11111	11211		1 1 1 1 1					1111	•		1 1 1 1 1 1		1.0			Size percent less than (mm	D50	
				Note:								1										0.01			Size per	D35	
							100%	%Ub					Jəu			erc erc	Э.	20%	10%		<u></u>					D16	
		#	#	#	#	# #	#	*	# #	# #	#	# #	#	#	#	#	#	*	#	*	# #	# #	# #	#	# #	#= T	T
	Count	36	22	8	4	9	5	2		7	2		-	e	-	∞	33	3	4								
	e (mm)	0.062	0.13	0.25	0.5	+	2	4	9	80	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096		
	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	8	11	16		32	45	64	6	128	180		362	L	1024	2048		(<u> </u>
Pebble Count	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	verv large boulder	bedrock	

Purlear Creek Upstream Reference Reach - Materials

Appendix F

Entrainment Calculation Form Sample A

Site: Purlear Creek Upstream Reference Reach

Crew: CWE, NW, CD, ARK, PTR, SS

Date: 6-24 to 6-28-2002

	Crit	ical Dimensionless Shear Stress: $\tau_{ci} = 0.0834(d_1/d_{50})^{-0.872}$	
Value	Variable	Definition	
50	d _i (mm)	D50 Bed Material (D50 from riffle pebble count)	
9.5	d ₅₀ (mm)	Bar Sample D50 or Sub-pavement D50	
0.020	$ au_{ci}$	Critical Dimensionless Shear Stress	

Ba	Bankfull Mean Depth Required for Entrainment of Largest Particle in Bar Sample:						
	$d_r = (\tau_{ci}^* 1.65^*)$	D _i)/S _e 1.65=submerged sp	ecific weight of sediment				
Value	Variable	De	finition				
0.020	$ au_{ m ci}$	Critical Dimensionless Shear	Stress				
0.28	D _i (feet)	Largest particle from bar samp	ble				
0.016	S _e (ft/ft)	Existing Bankfull Water Surface	ce Slope				
0.566	d _r (ft)	Bankfull Mean Depth Requir	red				
0.6	d _e (ft)	Existing Bankfull Mean Dep	th (from riffle cross section)				
Circle:	Stable (d _c /d _r =1)	Aggrading (d _e /d _r <1)	Degrading (d _e /d _r >1)				

	$S_r = (\tau_{ci}^* 1.65)$	5*D _i)/d _e 1.65=submerged specifi	ic weight of sediment
Value	Variable	Def	inition
0.020	τ _{ci}	Critical Dimensionless Shear S	Stess
0.28	D _i (feet)	Largest particle from bar samp	le
0.6	d _e (ft)	Existing Bankfull Mean Depth	(from riffle cross section)
0.015	S _r (ft/ft)	Bankfull Water Surface Slope	Required
Circle:	Stable (S _r /S _r =1)	Aggrading (S _e /S _r <1)	Degrading (S _e /S _r >1)

Sediment Transport Validation

88.4	Largest Particle in Bar Sample D _i (mm)
0.6	Bankfull Shear Stress $\tau_c = \gamma RS$ (lb/ft ²)
35	Moveable particle size (mm) at bankfull shear stress (predicted by the Shields Diagram: Blue field book: p238, Red field book: p190)
1.1	Predicted shear stress required to initiate movement of D _i (mm) (see Shields Diagram: Blue field book: p238, Red field book: p190)

Velocity Comparison Form

Site:Purlear Creek Upstream Reference ReachCrew:CWE, NW, CD, ARK, PTR, SSDate:6-24 to 6-28-2002

iner e contrats

Inpu	It Variable	Output Variables			
Bankfull Cross Sectional Area (A _{BKF})	7.4	++-	Bankfull Mean Depth D _{BKF} = (А _{BKF} /W _{BKF})	0.6	ft
Bankfull Width (W _{BKF})	11.9		Wetted Perimeter (WP) (-(2*D _{BKF})+W _{BKF})	10.7	ft
D ₈₄	87	mm	D ₈₄ (mm/304.8)	0.285	ft
Bankfull Slope	0.016	ft/ft	Hydraulic Radius (R) (A _{BKF} /WP)	0.69	ft
Gravity	32.13	ft/s ²	R/D ₈₄ (use D ₈₄ in FEET)	2.43	ft/ft

R/D84, u/u*, Mannings n		
u/u* (using R/D84: see Reference Reach Field Book: p188, River Field Book: p233)	7.25	ft/s/ ft/s
Mannings n: (Reference Reach Field Book: p189, River Field Book, p236)	0.033	ft ^{1/6}
Velocity: from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	4.48	ft/s

u/u* = 2.83+ 5.71	ogR/D ₈₄	
u* : u*=(gRS) ^{0.5}	0.597	ft/s
Velocity : u=u*(2.83+5.7log(R/D ₈₄)	3.01	ft/s

Mannings n by Stream Type		
Stream Type		
Mannings n: (Reference Reach Field Book: p 187, River Field Book: p237)	0.04	ft ^{1/6}
Velocity : from Manning's equation: u=(1.49R ^{2/3} S ^{1/2})/n	3.70	ft/s

Continuity Equation		
${f Q}_{{\sf BKF}}$ (cfs) from regional curve or stream gage calibration	61.3	cfs
Velocity : (u=Q/A or from stream gage hydraulic geometry) ¹	8.28	ft/s

BASIN CREEK REFERENCE REACH - Rosgen Type C4 Location: Wilkes County, NC - Take Traphill Road to Long Bottom Road (SR 1737) Reach: Station 0+00 at confluence of Basin and Cove Creeks Quad Sheet: Whitehead, NC Drainage Area: 7.2 sq. mi.

Quad Sneet:	whitehead, NC	Drainage Area:	7.2 sq. mi

Pebble Count

Length	Riffles 42	Runs 10	Glides 13	Pools 17		
	43	18	15	38		
	30	32	16	42		
	32	45	23	53		
	175 245	64				
· · · · ·		100		150	050	
Total Avg	567 94.5	169 33.8	67 16.8	150 37.5	953	
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
%	59%	18%	7%	16%		
%Riffles & Glides =	84%					
Channel Dimensions:	•					
Riffle Depth (ft)	21	Riffle Width (ft)	33.2	Riffle Area (sq ft)	68.4	
Run Depth (ft)		Run Width (ft)		Run Area (sq ft)	97.7	
Glide Depth (ft)		Glide Width (ft)		Glide Area (sq ft)	98.7	
Pool Depth (ft)	2.7	Pool Width (ft)	50.3	Pool Area (sq ft)	109.6	
Ratios:						
Pool Depth/Riffle Depth =		1.3				
Pool Width/Riffle Width =		1.5				
Pool Area/Riffle Area =		1.6				
Max Pool Depth/Mean Bankfull Dep		2.3				
Lowest Bank Height/Max Bankfull [epth=	1.0 to 1.3	Mean value 1.2			
Streamflow:						
Est Mean Velocity @ BKF (ft/sec) = Est Discharge @ BKF (cfs) =	:	5.5 375				
Channel Pattern:						
	350		Belt Width (ft)	60		Radius of Curvature (ft)
Meander Length (ft)	000		Sex Mont (n)	59 75		
Total	350		Total			Total
Total Average	350 350		Total Average			Total Average
Average Ratios:	350					
Average						
Average Ratios: MWR = belt width/bkf width =	350					
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width =	350 1.9 1.5					
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile:	350 1.9 1.5		Average	64.7		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) =	350 1.9 1.5 10.5	Avg Water Surface	Average	0.01437		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile:	350 1.9 1.5	Avg Water Surface	Average	0.01437 0.001942		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrr/bkf width = Channel Profile: Valley Slope (ft/ft) = Rinfle Slope (ft/ft) = Run Slope (ft/ft) =	350 1.9 1.5 10.5 0.02082 0.003064	Avg Water Surfac	Average a Slope (ft/tt) = Pool Slope (ft/ft) = Glide Slope (ft/ft) =	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrrv/bkf width = Channel Profile: Valley Slope (ft/ft) = Riftle Slope (ft/ft) =	350 1.9 1.5 10.5 0.02082 0.003064 334	Avg Water Surface Pool Length (ft)	Average a Slope (ft/ft) = Pool Slope (ft/ft) =	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrr/bkf width = Channel Profile: Valley Slope (ft/ft) = Rinfle Slope (ft/ft) = Run Slope (ft/ft) =	350 1.9 1.5 10.5 0.02082 0.003064	Avg Water Surfac Pool Length (ft)	Average s Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) 17	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrr/bkf width = Channel Profile: Valley Slope (ft/ft) = Rinfle Slope (ft/ft) = Run Slope (ft/ft) =	350 1.9 1.5 10.5 0.02082 0.003064 334 310	Avg Water Surfac Pool Length (ft)	Average s Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 38	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrr/bkf width = Channel Profile: Valley Slope (ft/ft) = Riffle Slope (ft/ft) = Run Slope (ft/ft) = Pool to Pool Spacing (ft)	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271	Avg Water Surface Pool Length (ft)	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrr/bkf width = Channel Profile: Valley Slope (ft/ft) = Rinfle Slope (ft/ft) = Run Slope (ft/ft) =	350 1.9 1.5 10.5 0.02082 0.003064 334 310	Avg Water Surface Pool Length (ft)	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 44 55	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lrn/bkf width = Channel Profile: Valley Slope (ft/ft) = Rinfle Slope (ft/ft) = Run Slope (ft/ft) = Pool to Pool Spacing (ft)	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft)	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Ruftle Slope (ft/ft) = Run Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios:	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) S Sum Average	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Riftle Slope (ft/ft) = Run Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios: Riftle slope/Avg WS slope =	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) Sum Average	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Run Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios:	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) S Sum Average	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Riffle Slope (ft/ft) = Run Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios: Riffle slope/Avg WS slope = Run slope/Avg WS slope = Pool slope/Avg WS slope = Run slope/Avg WS slope = Pool slope/Avg WS slope = Run slope/Avg WS slope = Run slope/Avg WS slope = Run slope/Avg WS slope = Run slope/Avg WS slope =	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) Sum Average 1.4 0.2 0.1 0.5	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Riiftle Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios: Ratios: Ratios: Glide slope/Avg WS slope = Pool slope/Avg WS slope = Glide slope/Avg WS slope = Glide depth/mean bkf depth =	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) S Sum Average 1.4 0.2 0.1 0.5 1.3	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		
Average Ratios: MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width = Channel Profile: Valley Slope (ft/ft) = Riffle Slope (ft/ft) = Run Slope (ft/ft) = Run Slope (ft/ft) = Sum Average Ratios: Riffle slope/Avg WS slope = Run slope/Avg WS slope = Pool slope/Avg WS slope = Pool slope/Avg WS slope = Run slope/Avg WS slope = Slide slope/Avg WS slope =	350 1.9 1.5 10.5 0.02082 0.003064 334 310 271 915	Avg Water Surface Pool Length (ft) Sum Average 1.4 0.2 0.1 0.5	Average a Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) = 17 36 42 53 156	0.01437 0.001942 0.006473		

44.3 69.3 40.1

153.7 51.2

Date: 10/28/1998 Party: Dick Everhart, Jerry Pate, Greg Goings and Joe Mickey

	Particle	Size(mm)	Total #	% Cum.	Cumulative (finer than)
	Silt/Clay	<0.062	2	2	0.062
S	Very Fine	0.062-0.125	8	10	0.125
A	Fine	0.125-0.25	12	22	0.25
N	Medium	0.25-0.50	4	26	0.5
D	Course	0.50-1.0	0	26	1
0	Very Course	1.0-2.0	0	26	2
	Very Fine	2-4	1	27	- 4
G	Fine	4-5.7	0	27	5.7
the second s	Fine	5.7-8	1	28	
R	Medium	8-11.3	1	29	11.3
A	Medium	11.3-16	2	31.	16
V	Course	16-22.6	1	32	22.6
E	Course	22.6-32	4	36	32
	Very Course	32-45	11	47	45
	Very Course	45-64	6	53	64
c	Small	64-90	12	65	90
0	Small	90-128	9	74	128
B	Large	128-180	10	84	180
	Large	180-256	8	92	256
B .	Small	256-362	4	96	- 362
0	Small	362-512	2	98	512
L	Medium	512-1024	0	98	1024
D .	Large-Vry Lrg	1024-2048	. 0	98	2048
	Bedrock	>2048	2	100	3000
			*****	100	-

Channel Materials:

% Sand = 26 % Gravel = 27 % Cobble = 39 % Boulder = 6 % Bedrock = 2 D16 = 0.17 mm D35 = 29 mm D50 = 58 mm D84 =180 mm D95 = 300 mm

1

Appendix 6

DESIGN FOR: Big Warrior Creek - A, H, & W Farm

÷

ç.

 $\zeta^{(j)}$

DESIGN FOR:					DC	Defense	
Parameter	Existing	Reference	Design	Existing	Reference	Reference	Design
Reach Name or Info Source	BWC-upper	BWC-upper	BWC-upper	BWC-lower	Basin Creek	Basin Creek	BWC-lower
Stream Type	B	<u>`В</u>	B	Bc4	C4	C4 7.2	C
Drainage Area (sq mi)	0.7	. 0.7	0.7	1.17	6.8	33.2	1.2
Bankfull Width, Wbkf (ft)	17.3	15.7	15.0	19	30.7		20.0
Bkf Cross Sec Area, Abkf (sq ft)	18.5	21.9	18.0	32.73	57.4	68.4	25.000
Bankfull Mean Depth, Dbkf (ft)	1.1	1.40	1.2	1.72	1.9	2.1	1.4
Bankfull Max Depth, Dmax (ft)	1.5	1.79	1.8	2.29	2.5	3.1	1.9
Width Flood Prone Area, Wfpa (ft)	20	30	30	49	85	329	50
Width/Depth Ratio, Wbkf/Dbkf	16.1	11.24	12.50	11.0	16.16	15.8	14.3
Abkf/Wbkf	<u> </u>		12.2		1.87	2.06	60.0
Riffle Length			40.0		73	0.02002	60.0
Riffle Slope, (ft/ft)			0.042		0.0509	0.02082	0.0365
Mean Riffle to Riffle Spacing, (ft)	19.0		60.0		143		93.2
Min. Riffle to Riffle Spacing					48.5		31.6
Max. Riffle to Riffle Spacing		·			238		155.0
Pool Depth			2.0		2.7	2.7	2.0
Pool Width			21.0		40.6	50.3	26.4
Max. Pool Depth			3.0		3.1	5.2	3.5
Pool x-sect. Area			20.2		64.4	109.6	28.0
Mean Pool length			20.0				22.0
Min. Pool Length			7.7			17	10.2
Max. Pool Length			25.0		84	53	31.9
Pool Slope, (ft/ft)	0.0075		0.0129		0.0055	0.001942	0.0039
Min Pool Spacing, Lps (ft)	6				224	271	163.25
Max Pool Spacing, Lps (ft)	82					334	201.20
Avg. Pool to Pool Spacing							184.00
Riffle to Pool Spacing					91.8		59.8
Meander Length, Lm (ft)				180	350	350	270
Min Radius of Curvature, Rc (ft)				45	76.7	44.1	27
Max Radius of Curvature, Rc (ft)					133.8	69.3	50
Min Belt Width, Wblt (ft)				52	105	59	35.54
Max Belt Width, Wblt (ft)						75	45.18
Sinuosity, K	1.02		1.2	1.15	1	1	
Valley slope, Sval (ft/ft)	0.0338			0.0116	0.0139		
Channel Slope; Schan=Sval/K (ft/ft)	0.0333			0.0101	0.01		`````
Valley Length, Lval (ft)	2580.0			1220			
Channel Length, Lcha (ft)	2701.0		f	1440		1	
RATIOS	1,01.0	3		a the Bat Barby Marth State			25.55 (S. 1997)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ward Bran war a week	the second second second second	A state of the second second	and the second	
Entrenchment Ratio Wfna/Whkf	12	19	1.9	2.6	2.8	8.9	2.5
Entrenchment Ratio, Wfpa/Wbkf	1.2	1.9	1.9	2.6	2.8 2.77	8.9	Strand and the state of the state of the state
Width Flood Prone Area/Wbkf (ft)	1.2	1.9	1.9	2.6	2.77	8.9	State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf	1.2	1.9	1.9	2.6	2.77 2.38		State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf		1.9	1.9	2.6	2.77 2.38 1.34	8.9	State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf	1.2 1.1	1.9	1.9	2.6	2.77 2.38 1.34 4.658		State of the state of the state
Width Flood Prone Area/Wbkf (tt) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580		State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing, Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752		State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61	1.48	STATISTICS IN THE REAL PROPERTY AND
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752	1.48	State of the state of the state
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28	1.48 1.1 1.1 0.512	STATISTICS IN THE REAL PROPERTY AND
Width Flood Prone Area/Wbkf (ft) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf Max. Pool Length/Wbkr		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28 2.736	1.48 1.1 0.512 1.596	STATISTICS IN THE REAL PROPERTY OF
Width Flood Prone Area/Wbkf (tt) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf Max. Pool Length/Wbkr Pool Depth/Dbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28 2.736 1.4	1.48 1.1 0.512 1.596 1.3	STATISTICS IN THE REAL PROPERTY AND
Width Flood Prone Area/Wbkf (tt) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf Max. Pool Length/Wbkr Pool Depth/Dbkf Max. pool Depth/Dbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28 2.736 1.4 1.6	1.48 1.1 0.512 1.596 1.3 2.476	STATISTICS IN THE REAL PROPERTY AND
Width Flood Prone Area/Wbkf (tt) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf Max. Pool Length/Wbkr Pool Depth/Dbkf Max. pool Depth/Dbkf Pool-Pool spacing/Wbkf	1.1	1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28 2.736 1.4 1.6 7.3	1.48 1.1 0.512 1.596 1.3	Strand and the state of the state of the state
Width Flood Prone Area/Wbkf (tt) Riffle length/Wbkf Max. riffle Depth/Dbkf Mean Riffle to Riffle Spacing,Wbkf Min. Riffle-Riffle spacing/Wbkf Max. Riffle-Riffle spacing/Wbkf Riffle Slope Ratio, Srif./Schan Pool length/Wbkf Min. Pool Length/Wbkf Max. Pool Length/Wbkr Pool Depth/Dbkf Max. pool Depth/Dbkf		1.9	1.9	2.6	2.77 2.38 1.34 4.658 1.580 7.752 3.61 2.28 2.736 1.4 1.6	1.48 1.1 0.512 1.596 1.3 2.476	State of the state of the state

Appendix 6

			2.4	2.5	1.328	
1				4.66	2.087	
	and the second second		0.0	11.4	10.5	
			2.7	3.42	1.777	
1					2.259	
80*	•				375	
3.85		5.5			5.5	
				0.0 2.7 80*	4.66 0.0 11.4 2.7 3.42 80*	2.1 2.0 4.66 2.087 0.0 11.4 2.7 3.42 2.759 80*

+ي

* Regional curve predicts this value; however, WinXSPRO model predicted 45 cfs.

\$

÷

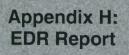
Antonio entre da

Italicised numbers are for parameters that were determined using ratios from reference reachs.

Appendix G: Morphological Table F^{eelman}terski Mo*gene*jselovable

and a state of the second s

MORPHOLOGY CHARACTERISTICS


Restoration Site: Purisar Creek, Wikes County @ Hayes Farm Nearest USGS Station: Elk Oreek Reference Reach: Purisar Creek, Upper Big Warrior Creek, and Basin Creek

REACH Basin Creek	Q.	7.20	79.FZ	21	15.8	68.4	U	0	375.0		3.1	u+	2	1.2		D'RZP	00		350.0		10.5		2.00 1.04	10.00	1.2-2.0	64.7	69 - 75	1.9				1	0.0140	0.000	0.00	1.500		0 0020	11		4.8		23	50.3		15	*00 a	0.651	16		305.0	82	8.1-10.2
┝─┤			Mean: Hange:	Maen. Renue	Mean.	Mean	Han a	Mean. Ranna:	Mean:	Range	Maan.	verine.	Bande:	Meen	Range	Mean:	Hange.	Range:	Mean:	Range:	Mean:	Range.			4 Range:		158	Mean:	Range.					11000		Maan	Plange:		Hange:	Racen	Mean:	Range:	Mean	Mean	Range:	Reen	Bange	Rande:	Mean.		Mean: Bannar	Mean	Range
REFERENCE REACH Basin Creek 2	8	6.80	30.7	61	16.2	57.4		1	1		52		5.1			85.0		- C	350.0		11.4		105.3	15.1 - 133.0	25-4-	105.0		3.4			1.4	0.0140	0.0100	2224.3	11CD/D	3,800		0.0055		0.0	3.1	-	1.8	AD A		1.9		54.4	4.7		224.0	73	
$\left - \right $			15.7 Mean: Range:	1.4 Mean. Banne	1.2 Mean.	15 Milean	Range	- Mean:	Marry	Range	1.E · Moen		7.3 Mean. Rande	Maan	Range	30.0 Mean:	Hange:	r y mean	- Mean:	Range:	Mean:	Range.	Mean:	Hange:	Mean. Rance:	Mean:	Range:	- Mean:	Range:					-	- Mean:		Flarige	Mean.	Range	- Near	Mean:	Range		Harge	Fange	- Maan.	Renge	Mean: Dange	weer	Plarigo.	Mean:	Maan	Farge
REFERENCE Upper Big Warrlor Creek	æ	0.70	-		Mean:	Range:		an:	1ge:	Range.	5			Hei.	ige.	an.	ige:	Rance	i i	Range:	an:	Range:	an:	1 <u>0</u> 8:	Mean. Ranna	an:	are:	an:	Range:		1	t			Mean:	nge.	606	an:	nge:	ari.	an'	nge:	en:	Range	an. Doe:	30	nge:	30)	nge.		an	Moen:	906
$\left \right $			12.5 Mean: Ranne:	36 Ma	20,8 Me	Rat 7.4 MA			3.0 - 8.28 Hai		10 46		1.7 Ma	2.8 145		18.0 Me	Rai	1 4 (10)	100.0 Ma		8.0 Me		20.6 Me	Har Har	1.6 Me	21.0 Me		1.7 Me	Ra		9	02			0.0290 Me	T3 240	Ra Fla	0.002 Me		0.1 146	1 3 Me		2.2 Me		12.0 Me Ra	1.0 Me	Ra	5.0 Me	1 Me	Ra	100.0 Me		52-74 Ra
REFERENCE REACH REACH Upstream 1	840	0.57	Mean:		Mean:	Range:	Farge	Mean:	Range:	Fierrie	t-thear	Ranga	Mean:	Mann	Rarge.	Mean:	Range:	28 8	Maan.	Rance:	Mean:			Range:	Mean: Dannar	20	21,222	51885	Range:		1.06	021010		0010 0	Maen	Hange.	Rancia	Mean:	5 Range.	Meen	Maan'	Range:	Mean		Mean		Flartys		Harge:	Range	Mean	Hange: Mean	Aartye
PROPOSED REACH (C Channel) ⁵	v	1.8-28	20.7	13 001	17.7		23.6-30.7	4,0	1	-	1.0	17.20	1.4	61-01	10-12	130.0	122-138	6.3	49.07	212-241	11.0	10.5-11.4	51.8	48.3 - 54.8	2.5	10-01	1 02 1 02	27	1.9 - 3.4		1.2	0.010	9000	0.008-0.013	0.013	0.01 - 0.02	<u>-</u>	0.003	0.002 - 0.001	500	11-00	2.4 - 2.8	20	16-23	370-374	1.4	13-15	38.4	33.3 - 43.0	1.1 - 1.6	170.0	151-209	7.3-10.1
\vdash		1.8 Rande			8 Mean:					0 Mean Renne:			1.5 Mean:	1./ Hange	0.12 Radia	3 Mean:	11.9 - 32.81 Range:		1.4-7.K Kunge	tos Randar.		Range	1	30.9	6 Mean:		26.7 Mean:		- Range:	,		20 Mean	- U.US Manugu	0.013 - 0.025 Range			1.8 MORT	02 Mean	0.002 - 0.004 Range:	13 Meen	- Hanga	11-26 Rande			15.7 Mean				21.2 Range	- Renger		116 Range.	7.4 Range
PROPOSED REACH (B Channel) ⁵	60	T	Ħ	0'1 0 V						0.02		0		e: 1.3 -							-		25.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	. 16		26.				1.2		T	T.											-			17.2	-				e 52.74
-		Mean	10.0 Mean	13 Mean	7.7 Mean		13.4 Mater Range	6.4 Mean	1	85.6 Mean	2.0 Mont	Grand	1.5 Mear	Fang	A DIAL	16.0 Mear		1.0 Meen.	Guand	Mear	Mear	Range:	- Mean	Range:	- Mean	Hange	- Mear	Hang	Rand						0.02 Mear	Rang	1.5 Meer	0.01 Maar		0.4 Mear	Rang	e e medi Ranc	1.7 Moeu	Parije	18.5 Mear	T G MAN	Rarg	24.1 Mean:	Hange:	Party Contraction	- Mear	Fange	Rary
EXISTING CHANNEL (3) [†]	55	61.0		Hange: Meien	Range. Moen	Range:	Maent Pannor	Mean:	Range:	Mean	tanga Atam	Ranga	Mean	Range:	VRURT.	Mean.	Range:	Meer	Flarige	Mean:	nanye. Maan	Rance:	Mean:	Range:	Mean:	Range	Mean:	Hange:	Mean. Ranner		1.1	0.0140		0.0130	Mean ⁻	Range:	Moan'	Man-	Range	Medri.	Range	Ranne	Meen:	Harge	Mean:	Hange	Renge:	Mean	Range:	Rance	Maan	Range	Party B
EXISTING CHANNEL (2) ¹	, c	5	16.2	11	147		178		+	54.3	- 13		1.5			70.0		4.3		1			•		1		1		-		1.1	0.0150		0.0140	0.01		1.000	100		0.7		77	00		30.8	0		36.9		53	1		i i
E E			Meart:	Range	- Fiatrie Maan	Range:			1.2	Mean				1400.00	Moen			Mean	Renga	Mean	Hange.	Mean. Banne	Mean	Range:	Mean	Range:	Mean	Range:	Bande	02:00.								Hange.			Range	Mean	Maan:	Range.									Renge
EXISTING CHANNEL (14)		an to forevelan	£ 0%	6.0	1.11		33.1			132.4	<u> </u>		2.4		-	80.0		0		1		1	1		1				1		1.0	0.0100		0.0096	0100		1,000	0000		02		21	2.9		20.2			26.9		0.5	43.0		-
			Mean:	Range: Maan.	Hange Manuer	Range:	Maari	Mean:	Range:	Maen:	Hange	Panoa:	Mean:	Range	Neer	Magn'	Rande:	Mean	Pange:	Mean								88.8	88		(tipe			T										Range:						Mean	Mean.		erg beear d) Renue
VARIABLES	Lype T	a Area	Width	Mean	dapehh (duu) e luurate moorte Bosto	e)	cross cacfional	Mean Velocity ²		8. Bankluß Discharge, cfe ³	(Gad)	Now Party Long In-	dek		THE FIRE THE TOTAL	Flood Prone		13 Entrenchment Rate		<u>ir Length</u>		15. Hatto of Meander Length to Booktral Writth 7 AM 3	A Cunstine		17. Patio of Radius of Curvature	Tull Width (RJWaw)	-uti		ar Width Hatio	567	Length / Valley Ler	tope (SV _{alle})		22 Averge othern brope rs. 1= (S A)	200		Riffe Slope to Avg	See See	970	Pool Slope to Avg.	Speed Sarah	m Pool	Pool	Depth (dyne Afred	(th		Rendrial Writh (W W)	88		Ratio of Pool Area to Banking Area (2016-1)	Pool Spacing		23 Hato of host to host sparses to Bankfull Width (p.p.Wtbd)
	1 Steem Type	Creenagen) 2 Dreinaga Aree	3. Bankfull	d Barkhall	b) (1991)	(W _b w/d _b ,	6 Bankful	7 Bankfull	(Vea)	8. Bankluß	[Child	6 DB 8 DB	10 Max drav	ratio	11 Low Bai	to distant cr	Area W	13 Entranci	W**W)	14. Meande	(L)	15. Hato of	15 Dedite	(B.)	17. Ratio of	to Bank	18. Belt Wic	(Wbu)	19 Meande	C C C C C C C C C C C C C C C C C C C	CU SELUCE	21. Valley S	(11:11)	22 Avenue	23, 7740 02	(S _{rel})	24 Pato of	Slope ((S)	28, Reto of	Sepa (27. Maxmu	De Cetore	Depth (29 Pool WI	(Mpoor)	Sendid Familia	Pool Are	(A)	31 Patroci	32 Pool to 1	(d - d)	32 MBuc o

Notes

-0040

Refer to Figure 1 for location Baskdin vocations estimate a formations. Based on Contrubit Stratter (C a - X U). Baskdi velocities for Proposed Channels based on Local Reference and Regional Reference Values Devocations estimate nationes reprise or bank revision act channel approximation and regional Reference Values No odsermable estimate nationes reprise to the monocation are channels track for a range of values possible for multiple stream reaches with project area. See typical sections in plans for spocific dimensions.

The EDR Radius Map with GeoCheck[®]

WRP-Purlear Creek CC Hayes Road Purlear, NC 28665

Inquiry Number: 802027.3s

June 20, 2002

The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06490

Nationwide Customer Service

FORM-HOW

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary					 	 ES1
Overview Map						
Detail Map						
Map Findings Summary	/				 	 _ 4
Map Findings				· · · · · · · · · · · ·	 	 _ 5
Orphan Summary					 	 . 10
Government Records S	earched/D	ata Cur	rency [·]	Tracking	 	 GR-

GEOCHECK ADDENDUM

Physical Setting Source Addendum		 A-1
Physical Setting Source Summary		 A-2
Physical Setting Source Map		A-7
Physical Setting Source Map Findings		 A-8
Physical Setting Source Records Search	ed	 A-11

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer

Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL EDR BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES.

Entire contents copyright 2001 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and the edr logos are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

PAGE

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR). The report meets the government records search requirements of ASTM Standard Practice for Environmental Site Assessments, E 1527-00. Search distances are per ASTM standard or custom distances requested by the user.

TARGET PROPERTY INFORMATION

ADDRESS

CC HAYES ROAD PURLEAR, NC 28665

COORDINATES

 Latitude (North):
 36.19860

 Longitude (West):
 81.29670

 Universal Tranverse Mercator:
 Zone 17

 UTM X (Meters):
 473325.

 UTM Y (Meters):
 4005816

36.198600 - 36° 11' 55.0" 81.296700 - 81° 17' 48.1" Zone 17 473325.7 4005816.2

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: Source:

2436081-B3 PURLEAR, NC USGS 7.5 min quad index

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the ASTM E 1527-00 search radius around the target property for the following databases:

FEDERAL ASTM STANDARD

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NFRAP	CERCLIS No Further Remedial Action Planned
CORRACTS	Corrective Action Report
RCRIS-TSD	Resource Conservation and Recovery Information System
RCRIS-LQG	Resource Conservation and Recovery Information System
RCRIS-SQG	. Resource Conservation and Recovery Information System
ERNS.	Emergency Response Notification System

STATE ASTM STANDARD

SHWS	Inactive Hazardous Sites Inventory
SWF/LF	List of Solid Waste Facilities
	Incidents Management Database
AST	AST Database

EXECUTIVE SUMMARY

FEDERAL ASTM SUPPLEMENTAL

CONSENT	Superfund (CERCLA) Consent Decrees
ROD	Records Of Decision
Delisted NPL	National Priority List Deletions
FINDS	Facility Index System/Facility Identification Initiative Program Summary Report
HMIRS	Hazardous Materials Information Reporting System
MLTS	Material Licensing Tracking System
MINES	Mines Master Index File
NPL Liens	Federal Superfund Liens
PADS	PCB Activity Database System
RAATS	RCRA Administrative Action Tracking System
TRIS	Toxic Chemical Release Inventory System
	Toxic Substances Control Act
	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, &
	Rodenticide Act)/TSCA (Toxic Substances Control Act)

STATE OR LOCAL ASTM SUPPLEMENTAL

LUST TRUST	State Trust Fund Database	
IMD	Incident Management Database	

EDR PROPRIETARY HISTORICAL DATABASES

Coal Gas_____ Former Manufactured Gas (Coal Gas) Sites

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified.

Elevations have been determined from the USGS 1 degree Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. EDR's definition of a site with an elevation equal to the target property includes a tolerance of +/- 10 feet. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property (by more than 10 feet). Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STATE ASTM STANDARD

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environment, Health, & Natural Resources' Petroleum Underground Storage Tank Database.

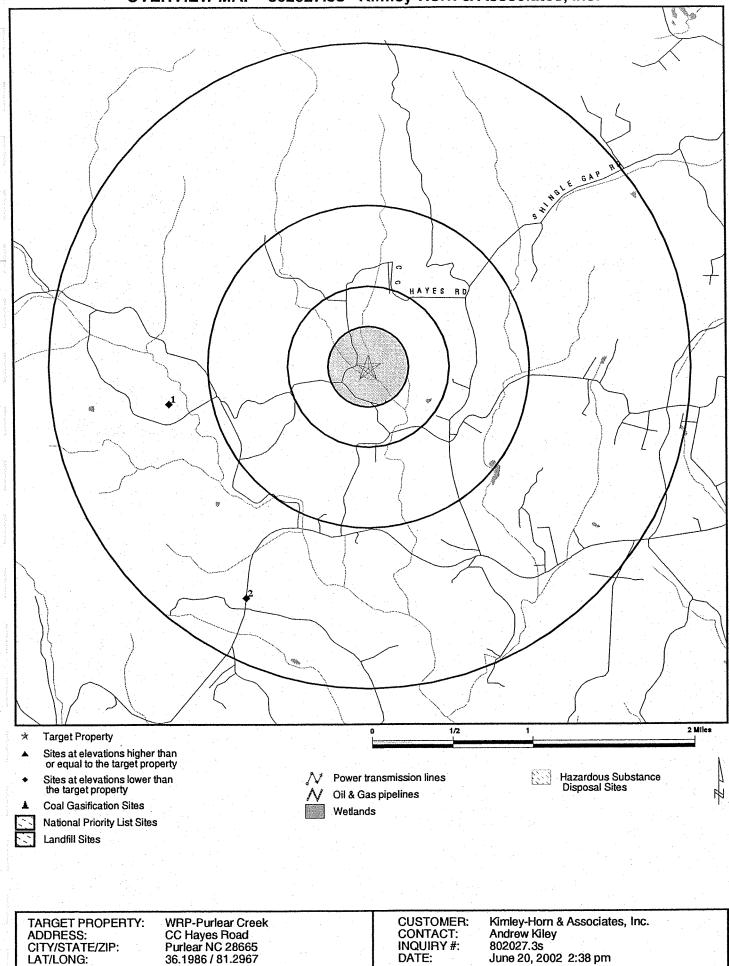
A review of the UST list, as provided by EDR, and dated 03/08/2002 has revealed that there is 1 UST site within approximately 2 miles of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
PURLEAR GROCERY	8172 BOONE TRAIL	1-2 SSW	2	5

STATE OR LOCAL ASTM SUPPLEMENTAL

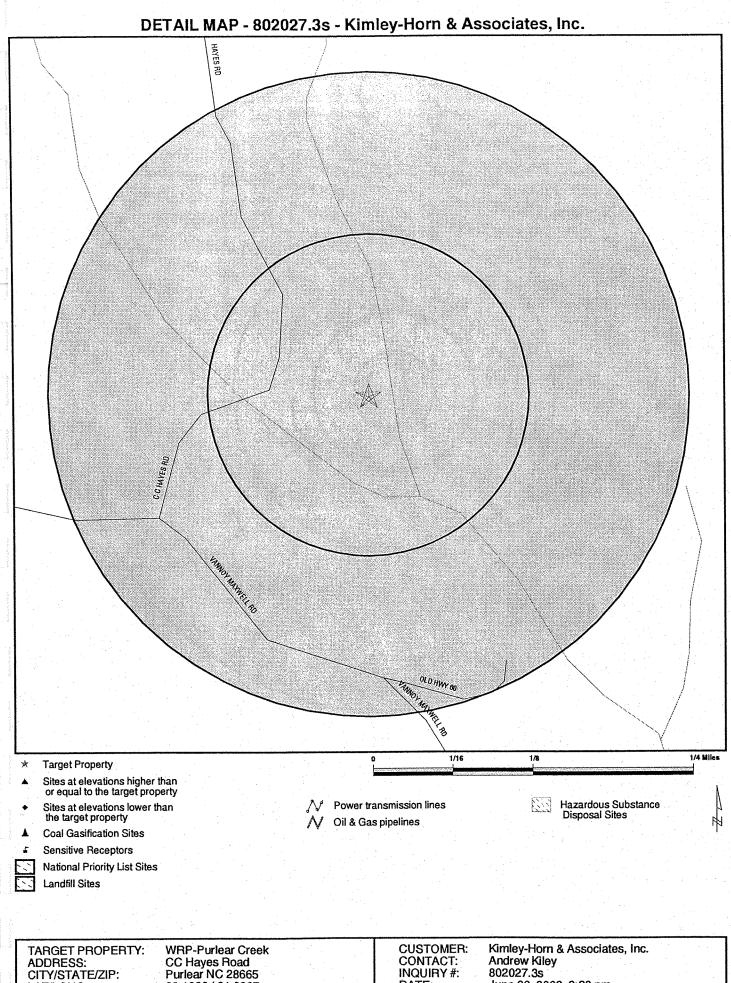
HSDS: The Hazardous Substance Disposal Sites list contains locations of uncontrolled and unregulated hazardous waste sites. The file contains sites on the national priority list as well as the state priority list. The data source is the North Carolina Center for Geographic Information and Analysis.

A review of the NC HSDS list, as provided by EDR, and dated 06/21/1995 has revealed that there is 1 NC HSDS site within approximately 2 miles of the target property.


Lower Elevation	Address		Dist / Dir	Map ID	Page

RADIATION PHYSICS CONSU	ILTANTS	and the second	1-2 W	1	5

EXECUTIVE SUMMARY


Due to poor or inadequate address information, the following sites were not mapped:

Site Name	Database(s)
RADIATION PHYSICS CONSULTANTS	SHWS
MILLERS CREEK GULF	UST
TRADERS II	UST
B & B QUICK STOP	UST
OAK FOREST 76	UST, IMD
ROYALS PACKAGE STORE	UST
WEST WILKES HIGH SCHOOL	UST
DEEP FORD MARKET	UST
FAST TRACK #141	UST
DOLLAR MART #24	UST
MILLERS CREEK FARM	UST
BOB SHEPHERD LOGGING CO INC	UST
MORAVIAN FALLS EXPRESS #23726	UST
MAPLE SPRINGS GROCERY	UST
WILBAR 76	UST
STALEY RESIDENCE, WILLIAM	IMD

OVERVIEW MAP - 802027.3s - Kimley-Horn & Associates, Inc.

INQUIRY #: 802027.3s Purlear NC 28665 June 20, 2002 2:38 pm 36.1986 / 81.2967 DATE:

36.1986 / 81.2967

LAT/LONG:

INQUIRY #: DATE:

802027.3s June 20, 2002 2:38 pm

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	<u>< 1/8</u>	1/8 - 1/4	1/4 - 1/2	<u>1/2 - 1</u>	> 1	Total Plotted
FEDERAL ASTM STANDARI	D							
NPL Proposed NPL CERCLIS CERC-NFRAP		2.000 2.000 2.000 2.000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
CORRACTS RCRIS-TSD RCRIS Lg. Quan. Gen. RCRIS Sm. Quan. Gen. ERNS		2.000 2.000 2.000 2.000 2.000	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
STATE ASTM STANDARD								
State Haz. Waste State Landfill LUST UST AST		2.000 2.000 2.000 2.000 2.000	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 1 0	0 0 0 1 0
FEDERAL ASTM SUPPLEM	ENTAL							
CONSENT ROD Delisted NPL FINDS HMIRS MLTS MINES NPL Liens PADS RAATS TRIS TSCA FTTS		2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE OR LOCAL ASTM S	UPPLEMENTAL							
NC HSDS LUST TRUST IMD		2.000 2.000 2.000	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	1 0 0
EDR PROPRIETARY HISTO	RICAL DATAB	ASES					n de la	
Coal Gas AQUIFLOW - see EDR P	hysical Setting	2.000 Source Add	0 endum	0	0	0	0	0

TP = Target Property

NR = Not Requested at this Search Distance.

* Sites may be listed in more than one database

				_	
ap ID		MAP FINDINGS	3		
rection		U <u>san ana amin'ny sama</u> na amin'ny samana amin'			
stance					
stance (ft.				Database(s)	EDR ID Numbe EPA ID Number
evation	Site				
	Cool Coc Site Search: N	site was found in a search of Real	Property Scan's EN	IVIROHAZ database.	
	Cual das Sile Search. N	Sile was found in a search of fican	Toperty Courts En		
	RADIATION PHYSICS CO	DNSULTANTS		NC HSDS	S102442152
est					N/A
1	, NC				
695 ft.					
ower					
	NC HSDS:				
		ADIATION PHYSICS CONSULTANTS	Longitude:	81 19 9.264229	
		ederal	Superfund ID #:	980 559 397	
					U001189790
OW	PURLEAR GROCERY			UST	0001189790 N/A
SW 1	8172 BOONE TRAIL PURLEAR, NC 28665				147
594 ft.	, OILEAN, NO 20000				
ower					
	UST:				
	Facility ID:	0-006264			
	Telephone:	(704) 667-9453			
	Owner name :	TAR HEEL OIL CO INC.			
	Owner Address:	PO BOX 608/1225 D ST.			
		NORTH WILKESBORO, NC 286	50		
	Owner Phone :	(919) 662-9453	50		. '
	Tank capacity :	4000			
	Comment :	Not reported			
	Tank product :	Gasoline, Gasoline Mixture			
	Tank material :	Steel		ter en ser e L'en ser en s	
	Interior Protection: Exterior Protection:	Cathodic Protection Cathodic Protection			
	Piping material :	Steel		방송은 전쟁 전문 것	
	Certify Type :	Not reported			
	Leak Detection Typ				
	Leak Detection Pipi				
•	Corrosn Protec Tan				
	Corrosn Protec Pip Spill and Overfill :	Catchment basins			
	Financial Responsi				
	Region:	04			
	Tank ID:	A			
	Date installed:	09/22/1988			
	Date removed: Status:	Not reported Currently In Use			
	viano.				
	Facility ID:	0-006264			
	Telephone:	(704) 667-9453			
	Owner name :	TAR HEEL OIL CO., INC.			
	Owner Address:	PO BOX 608/1225 D ST.			
		NORTH WILKESBORO, NC 286	59		
	Owner Phone :	(919) 662-9453			
	Tank capacity :	4000	te plant en et e		
	Comment :	Not reported			
	Tank product :	Gasoline, Gasoline Mixture			
		Stool		the second se	
	Tank material : Interior Protection:	Steel Cathodic Protection			

energiane e

MAP FINDINGS

Map ID Direction Distance Distance (ft.) Elevation Site

Database(s)

EDR ID Number EPA ID Number

PURLEAR GROCERY (Continued)

Exterior Protection: Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsibility : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: Telephone: Owner name : **Owner Address:**

Owner Phone : Tank capacity : Comment : Tank product : Tank material : Interior Protection: Exterior Protection: Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsibility : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: Telephone: Owner name : **Owner Address:**

Owner Phone : Tank capacity : Comment : Tank product : Tank material : Interior Protection: Exterior Protection: Piping material : Certify Type :

Steel Not reported Not reported Not reported Sacrificial annonde Sacrificial annonde Catchment basins 04 В 09/22/1988 Not reported Currently In Use

Cathodic Protection

0-006264 (704) 667-9453 TAR HEEL OIL CO., INC. PO BOX 608/1225 D ST.

NORTH WILKESBORO, NC 28659 (919) 662-9453 4000 Not reported Gasoline, Gasoline Mixture Steel **Cathodic Protection Cathodic Protection** Steel Not reported Not reported Not reported Sacrificial annonde Sacrificial annonde Catchment basins 04 C. 09/22/1988 Not reported

0-006264 (704) 667-9453 TAR HEEL OIL CO., INC. PO BOX 608/1225 D ST.

Currently In Use

NORTH WILKESBORO, NC 28659 (919) 662-9453 1000 Not reported Kerosene, Kerosene Mixture Steel Cathodic Protection **Cathodic Protection** Steel Not reported

U001189790

MAP FINDINGS

Map ID Direction Distance Distance (ft.) Elevation Site

Database(s)

EDR ID Number **EPA ID Number**

U001189790

PURLEAR GROCERY (Continued)

Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsibility : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: **Telephone:** Owner name : **Owner Address:**

Owner Phone : Tank capacity : Comment : Tank product : Tank material : Interior Protection: Exterior Protection: Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsibility : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: Telephone: Owner name : **Owner Address:**

Owner Phone : Tank capacity : Comment : Tank product : Tank material : Interior Protection: Exterior Protection: Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank:

Not reported Sacrificial annonde Sacrificial annonde Catchment basins 04 D 09/22/1988 Not reported Currently In Use

Not reported

0-006264 (704) 667-9453 TAR HEEL OIL CO., INC. PO BOX 608/1225 D ST.

NORTH WILKESBORO, NC 28659

(919) 662-9453 1000 Not reported Diesel, Diesel Mixture Steel **Cathodic Protection** Cathodic Protection Steel Not reported Not reported Not reported Sacrificial annonde Sacrificial annonde Catchment basins 04 Ε 09/22/1988 Not reported Currently In Use

0-006264

(704) 667-9453 TAR HEEL OIL CO., INC. PO BOX 608/1225 D ST.

NORTH WILKESBORO, NC 28659 (919) 662-9453 2000 Not reported Gasoline, Gasoline Mixture Steel None

None Steel Not reported Not reported Not reported Not reported

MAP FINDINGS

Map ID Direction Distance Distance (ft.) Elevation Site

Database(s)

EDR ID Number EPA ID Number

U001189790

PURLEAR GROCERY (Continued)

Corrosn Protec Pipe: Spill and Overfill : Financial Responsibility : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: Telephone: Owner name : Owner Address:

04/28/1961 06/01/1988 Permanent Closed 0-006264 (704) 667-9453

Not reported

Not reported

04

1

Owner Phone :

Tank capacity : Comment : Tank product : Tank material : Interior Protection: **Exterior Protection:** Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsiblity : Not reported Region: Tank ID: Date installed: Date removed: Status:

Facility ID: Telephone: Owner name : **Owner Address:**

Owner Phone : Tank capacity : Comment : Tank product : Tank material : Interior Protection: **Exterior Protection:** Piping material : Certify Type : Leak Detection Type : Leak Detection Piping : Corrosn Protec Tank: Corrosn Protec Pipe: Spill and Overfill : Financial Responsiblity : Not reported

NORTH WILKESBORO, NC 28659 (919) 662-9453 1000 Not reported Gasoline, Gasoline Mixture Steel None None Steel Not reported Not reported Not reported Not reported Not reported Not reported 04 2 04/28/1961 06/01/1988 Permanent Closed

TAR HEEL OIL CO.. INC.

PO BOX 608/1225 D ST.

0-006264 (704) 667-9453 TAR HEEL OIL CO.. INC. PO BOX 608/1225 D ST.

NORTH WILKESBORO, NC 28659 (919) 662-9453 1000 Not reported Gasoline, Gasoline Mixture Steel None None Steel Not reported Not reported Not reported Not reported Not reported Not reported

	PURLEAR G	ROCERY (Con	tinued)				U001189790
Elevation	Site					 Database(s)	EPA ID Number
Distance ((ft)						EDR ID Number
Direction Distance							
Map ID				MAP FINDI	NGS		

TC802027.3s Page 9

PURLEAR GROCERY (Continued)

Second course

Region:	04
Tank ID:	3
Date installed:	04/24/1976
Date removed:	06/01/1988
Status:	Permanent Closed

Database(s) UST UST UST, IMD SHWS UST 28651 28651 28665 28665 28665 28651 28651 28651 28651 28651 28651 28651 28651 28651 28651 28651 đ HIGHWAY 421 NORTH--ROUTE 1 HWY 16 NORTH RT 2 BOX 611 OLD HIGHWAY 421 NORTH 13442 BOONE TRAIL ROAD 5968 NORTH HIGHWAY 16 6958 BOONE TRAIL ROAD OLD HIGHWAY 16 NORTH 2976 NORTH NC HWY 16 HIGHWAY 16 NORTH 2037 HIGHWAY 18 3009 N HWY 16 RT 2, BOX 31 Site Address HWY 16 N HWY 16 Ν HWY 16 SR 1353 RADIATION PHYSICS CONSULTANTS BOB SHEPHERD LOGGING CO.. INC MORAVIAN FALLS EXPRESS #23726 STALEY RESIDENCE, WILLIAM WILBAR 76 WEST WILKES HIGH SCHOOL MAPLE SPRINGS GROCERY ROYALS PACKAGE STORE MILLERS CREEK FARM MILLERS CREEK GULF DEEP FORD MARKET B & B QUICK STOP **DOLLAR MART #24** FAST TRACK #141 **OAK FOREST 76** TRADERS II Site Name U001204378 U003561968 U003146329 U003563123 U001205345 U003563428 U003766239 U001189875 U001187231 U001204505 U003563056 U001189877 U003091865 S103554514 U001188021 S104913813 EDR ID MORAVIAN FALLS MILLERS CREEK PURLEAR PURLEAR PURLEAR WILBAR ŝ

ORPHAN SUMMARY

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement of the ASTM standard.

FEDERAL ASTM STANDARD RECORDS

NPL: National Priority List

Source: EPA

Telephone: N/A

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 01/29/02 Date Made Active at EDR: 02/25/02 Database Release Frequency: Semi-Annually

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

Proposed NPL: Proposed National Priority List Sites Source: EPA Telephone: N/A

Date of Government Version: 01/17/02 Date Made Active at EDR: 02/25/02 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 02/04/02 Elapsed ASTM days: 21 Date of Last EDR Contact: 05/06/02

EPA Region 6 Telephone: 214-655-6659

EPA Region 8 Telephone: 303-312-6774

> Date of Data Arrival at EDR: 02/04/02 Elapsed ASTM days: 21 Date of Last EDR Contact: 05/06/02

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA

Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/12/02 Date Made Active at EDR: 06/03/02 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 03/25/02 Elapsed ASTM days: 70 Date of Last EDR Contact: 03/25/02

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Telephone: 703-413-0223

As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 02/14/02 Date Made Active at EDR: 06/03/02 Database Release Frequency: Quarterly

CORRACTS: Corrective Action Report

Source: EPA Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 11/14/01 Date Made Active at EDR: 01/14/02 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 11/14/01 Elapsed ASTM days: 61 Date of Last EDR Contact: 06/10/02

Date of Data Arrival at EDR: 03/28/02

Date of Last EDR Contact: 03/04/02

Elapsed ASTM days: 67

Date of Data Arrival at EDR: 03/25/02

Date of Last EDR Contact: 03/25/02

Elapsed ASTM days: 70

RCRIS: Resource Conservation and Recovery Information System Source: EPA/NTIS

Telephone: 800-424-9346

Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA).

Date of Government Version: 03/22/02 Date Made Active at EDR: 06/03/02 Database Release Frequency: Varies

ERNS: Emergency Response Notification System

Source: EPA/NTIS

Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 12/31/00 Date Made Active at EDR: 06/03/02 Database Release Frequency: Varies Date of Data Arrival at EDR: 03/05/02 Elapsed ASTM days: 90 Date of Last EDR Contact: 04/29/02

FEDERAL ASTM SUPPLEMENTAL RECORDS

BRS: Biennial Reporting System

Source: EPA/NTIS

Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/99 Database Release Frequency: Biennially Date of Last EDR Contact: 06/17/02 Date of Next Scheduled EDR Contact: 09/16/02

CONSENT: Superfund (CERCLA) Consent Decrees

Source: EPA Regional Offices

Telephone: Varies

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: N/A Database Release Frequency: Varies Date of Last EDR Contact: N/A Date of Next Scheduled EDR Contact: N/A

ROD: Records Of Decision

Source: EPA

Telephone: 703-416-0223

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 09/30/01	Date of Last EDR Contact: 04/09/02
Database Release Frequency: Annually	Date of Next Scheduled EDR Contact: 07/08/02
DELISTED NPL: National Priority List Deletions Source: EPA Telephone: N/A The National Oil and Hazardous Substances Pollution Contingen EPA uses to delete sites from the NPL. In accordance with 40 NPL where no further response is appropriate.	ncy Plan (NCP) establishes the criteria that the CFR 300.425.(e), sites may be deleted from the
Date of Government Version: 01/29/02	Date of Last EDR Contact: 05/06/02
Database Release Frequency: Quarterly	Date of Next Scheduled EDR Contact: 08/05/02
FINDS: Facility Index System/Facility Identification Initiative Progra Source: EPA Telephone: N/A Facility Index System. FINDS contains both facility information a detail. EDR includes the following FINDS databases in this re Information Retrieval System), DOCKET (Enforcement Docke enforcement cases for all environmental statutes), FURS (Fed Docket System used to track criminal enforcement actions for Information System), STATE (State Environmental Laws and	nd 'pointers' to other sources that contain more port: PCS (Permit Compliance System), AIRS (Aerometric et used to manage and track information on civil judicial deral Underground Injection Control), C-DOCKET (Criminal all environmental statutes), FFIS (Federal Facilities
Date of Government Version: 03/21/02	Date of Last EDR Contact: 04/08/02
Database Release Frequency: Quarterly	Date of Next Scheduled EDR Contact: 07/08/0
HMIRS: Hazardous Materials Information Reporting System Source: U.S. Department of Transportation Telephone: 202-366-4555 Hazardous Materials Incident Report System. HMIRS contains h	nazardous material spill incidents reported to DOT.
Date of Government Version: 09/30/01	Date of Last EDR Contact: 04/22/02
Database Release Frequency: Annually	Date of Next Scheduled EDR Contact: 07/22/0
 MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission Telephone: 301-415-7169 MLTS is maintained by the Nuclear Regulatory Commission and possess or use radioactive materials and which are subject to EDR contacts the Agency on a quarterly basis. 	d contains a list of approximately 8,100 sites which o NRC licensing requirements. To maintain currency,
Date of Government Version: 04/12/02	Date of Last EDR Contact: 04/08/02
Database Release Frequency: Quarterly	Date of Next Scheduled EDR Contact: 07/08/0
MINES: Mines Master Index File Source: Department of Labor, Mine Safety and Health Administ Telephone: 303-231-5959	tration
Date of Government Version: 12/14/01	Date of Last EDR Contact: 04/01/02
Database Release Frequency: Semi-Annually	Date of Next Scheduled EDR Contact: 07/01/0
NPL LIENS: Federal Superfund Liens Source: EPA Telephone: 205-564-4267 Federal Superfund Liens. Under the authority granted the USEF and Liability Act (CERCLA) of 1980, the USEPA has the auth to recover remedial action expenditures or when the property USEPA compiles a listing of filed notices of Superfund Liens.	owner receives notification of potential liability.

Date of Last EDR Contact: 05/28/02 Date of Government Version: 10/15/91 Date of Next Scheduled EDR Contact: 08/26/02 Database Release Frequency: No Update Planned PADS: PCB Activity Database System Source: EPA Telephone: 202-564-3887 PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities. Date of Government Version: 12/01/01 Date of Last EDR Contact: 05/14/02 Date of Next Scheduled EDR Contact: 08/12/02 **Database Release Frequency: Annually** RAATS: RCRA Administrative Action Tracking System Source: EPA Telephone: 202-564-4104 RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database. Date of Government Version: 04/17/95 Date of Last EDR Contact: 06/10/02 Date of Next Scheduled EDR Contact: 09/09/02 Database Release Frequency: No Update Planned TRIS: Toxic Chemical Release Inventory System Source: EPA Telephone: 202-260-1531 Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313. Date of Last EDR Contact: 03/25/02 Date of Government Version: 12/31/99 Date of Next Scheduled EDR Contact: 06/24/02 Database Release Frequency: Annually TSCA: Toxic Substances Control Act Source: EPA Telephone: 202-260-5521 Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site. Date of Last EDR Contact: 06/10/02 Date of Government Version: 12/31/98 Date of Next Scheduled EDR Contact: 09/09/02 Database Release Frequency: Every 4 Years FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) Source: EPA Telephone: 202-564-2501 Date of Last EDR Contact: 03/25/02 Date of Government Version: 01/14/02 Date of Next Scheduled EDR Contact: 06/24/02 Database Release Frequency: Quarterly FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) Source: EPA/Office of Prevention, Pesticides and Toxic Substances Telephone: 202-564-2501 FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis. Date of Last EDR Contact: 03/25/02 Date of Government Version: 01/11/02 Date of Next Scheduled EDR Contact: 06/24/02 Database Release Frequency: Quarterly

STATE OF NORTH CAROLINA ASTM STANDARD RECORDS

SHWS: Inactive Hazardous Sites Inventory Source: Department of Environment, Health and Natural Resources Telephone: 919-733-2801	
State Hazardous Waste Sites. State hazardous waste site records are the sta may or may not already be listed on the federal CERCLIS list. Priority sites (state equivalent of Superfund) are identified along with sites where cleanu responsible parties. Available information varies by state.	planned for cleanup using state funds
Date of Government Version: 03/22/02 Date Made Active at EDR: 05/27/02 Database Release Frequency: Annually	Date of Data Arrival at EDR: 04/15/02 Elapsed ASTM days: 42 Date of Last EDR Contact: 04/15/02
 SWF/LF: List of Solid Waste Facilities Source: Department of Environment, Health and Natural Resources Telephone: 919-733-0692 Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain ar facilities or landfills in a particular state. Depending on the state, these may or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for sites. 	y be active or inactive facilities
Date of Government Version: 04/01/02 Date Made Active at EDR: 06/07/02 Database Release Frequency: Semi-Annually	Date of Data Arrival at EDR: 04/30/02 Elapsed ASTM days: 38 Date of Last EDR Contact: 04/29/02
LUST: Incidents Management Database Source: Department of Environment, Health and Natural Resources Telephone: 919-733-1315 Leaking Underground Storage Tank Incident Reports. LUST records contain storage tank incidents. Not all states maintain these records, and the infor	an inventory of reported leaking underground mation stored varies by state.
Date of Government Version: 06/07/02 Date Made Active at EDR: 06/20/02 Database Release Frequency: Quarterly	Date of Data Arrival at EDR: 06/10/02 Elapsed ASTM days: 10 Date of Last EDR Contact: 06/10/02
UST: Petroleum Underground Storage Tank Database Source: Department of Environment, Health and Natural Resources Telephone: 919-733-1308 Registered Underground Storage Tanks. UST's are regulated under Subtitle Act (RCRA) and must be registered with the state department responsible information varies by state program.	I of the Resource Conservation and Recovery for administering the UST program. Available
Date of Government Version: 03/08/02 Date Made Active at EDR: 03/22/02 Database Release Frequency: Quarterly	Date of Data Arrival at EDR: 03/11/02 Elapsed ASTM days: 11 Date of Last EDR Contact: 06/10/02
AST: AST Database Source: Department of Environment, Health & Natural Resources Telephone: 919-715-6170 Facilities with aboveground storage tanks that have a capacity greater than 2	21,000 gallons.
Date of Government Version: 01/02/02 Date Made Active at EDR: 02/04/02 Database Release Frequency: Semi-Annually	Date of Data Arrival at EDR: 01/22/02 Elapsed ASTM days: 13 Date of Last EDR Contact: 04/22/02
STATE OF NORTH CAROLINA ASTM SUPPLEMENTAL RECORDS	
HSDS: Hazardous Substance Disposal Site Source: North Carolina Center for Geographic Information and Analysis	
Telephone: 919-733-2090 Locations of uncontrolled and unregulated hazardous waste sites. The file in List as well as those on the state priority list.	cludes sites on the National Priority

TC802027.3s Page GR-5

Date of Government Version: 06/21/95 Database Release Frequency: Biennially Date of Last EDR Contact: 06/03/02 Date of Next Scheduled EDR Contact: 09/02/02

LUST TRUST: State Trust Fund Database

Source: Department of Environment, Health & Natural Resources Telephone: 919-733-1315

This database contains information about claims against the State Trust Funds for reimbursements for expenses incurred while remediating Leaking USTs.

Date of Government Version: 05/10/02 Database Release Frequency: Semi-Annually

IMD: Incident Management Database

Source: Department of Health and Natural Resources Telephone: 919-733-1315

Groundwater and/or soil contamination incidents

Date of Government Version: 04/26/02 Database Release Frequency: Quarterly Date of Next Scheduled EDR Contact: 08/12/02

Date of Last EDR Contact: 05/13/02

Date of Last EDR Contact: 04/29/02 Date of Next Scheduled EDR Contact: 07/29/02

EDR PROPRIETARY HISTORICAL DATABASES

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines/Electrical Transmission Lines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines and electrical transmission lines.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

STREET AND ADDRESS INFORMATION

© 2001 Geographic Data Technology, Inc., Rel. 07/2001. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

WRP-PURLEAR CREEK CC HAYES ROAD PURLEAR, NC 28665

TARGET PROPERTY COORDINATES

Latitude (North): Longitude (West):	36.198601 - 36° 11' 55.0" 81.296700 - 81° 17' 48.1"
Universal Tranverse Mercator:	Zone 17
UTM X (Meters):	473325.7
UTM Y (Meters):	4005816.2

EDR's GeoCheck Physical Setting Source Addendum has been developed to assist the environmental professional with the collection of physical setting source information in accordance with ASTM 1527-00, Section 7.2.3. Section 7.2.3 requires that a current USGS 7.5 Minute Topographic Map (or equivalent, such as the USGS Digital Elevation Model) be reviewed. It also requires that one or more additional physical setting sources be sought when (1) conditions have been identified in which hazardous substances or petroleum products are likely to migrate to or from the property, and (2) more information than is provided in the current USGS 7.5 Minute Topographic Map (or equivalent) is generally obtained, pursuant to local good commercial or customary practice, to assess the impact of migration of recognized environmental conditions in connection with the property. Such additional physical setting sources generally include information about the topographic, hydrologic, hydrogeologic, and geologic characteristics of a site, and wells in the area.

Assessment of the impact of contaminant migration generally has two principle investigative components:

1. Groundwater flow direction, and

2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata. EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

USGS TOPOGRAPHIC MAP ASSOCIATED WITH THIS SITE

2436081-B3 PURLEAR, NC **Target Property:** Source: USGS 7.5 min quad index

GENERAL TOPOGRAPHIC GRADIENT AT TARGET PROPERTY

Target Property:

General ESE

Source: General Topographic Gradient has been determined from the USGS 1 Degree Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County WILKES, NC	FEMA Flood Electronic Data Not Available
Flood Plain Panel at Target Property:	Not Reported
Additional Panels in search area:	Not Reported
NATIONAL WETLAND INVENTORY	NWI Electronic
NWI Quad at Target Property PURLEAR	Data Coverage YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

AQUIFLOW®

Search Radius: 2.000 Miles.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

FF

Not Reported

MAP ID

LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT			GEOLOGIC AC	GEOLOGIC AGE IDENTIFICATION		
	Era:	Paleozoic	Category:	Eugeosynclinal Deposits		
	System:	Cambrian				
	Series:	Cambrian				
	Code:	Ce (decoded above as Er	a, System & Series)			

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name:	PACOLET				
Soil Surface Texture:	fine sandy loam				
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.				
Soil Drainage Class:	Well drained. Soils have intermediate water holding capacity. Depth to water table is more than 6 feet.				

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: HIGH

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

Boundary			Classification				
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	3 inches	fine sandy loam	Granular materials (35 pct. or less	COURSE-GRAINED SOILS, Sands, Sands with	Max: 6.00 Min: 2.00	Max: 6.50 Min: 4.50
				passing No. 200), Silty, or Clayey Gravel and Sand.	fines, Silty Sand.		
2	3 inches	29 inches	sandy clay	Silt-Clay Materials (more than 35 pct.	FINE-GRAINED SOILS, Silts and Clays	Max: 2.00 Min: 0.60	Max: 6.00 Min: 4.50
				passing No. 200), Clayey Soils.	(liquid limit less than 50%), silt.		
3	29 inches	52 inches	clay loam	Granular materials (35	FINE-GRAINED SOILS, Silts and Clays	Max: 2.00 Min: 0.60	Max: 6.00 Min: 4.50
				pct. or less passing No. 200), Silty, or	(liquid limit less than 50%),		
				Clayey Gravel and Sand.	Lean Clay	Max: 2.00	Max: 6.00
4	52 inches	70 inches	sandy loam	Silt-Clay Materials (more than 35 pct.	SOILS, Sands, Sands with	Min: 0.60	Min: 4.50
				passing No. 200), Silty	fines, Silty Sand.		

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures:	clay loam gravelly - sandy loam sandy loam loam
Surficial Soil Types:	clay loam gravelly - sandy loam sandy loam loam
Shallow Soil Types:	clay sandy clay loam

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

silt loam clay loam silty clay loam

Deeper Soil Types: fine sandy loam weathered bedrock

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

According to ASTM E 1527-00, Section 7.2.2, "one or more additional state or local sources of environmental records may be checked, in the discretion of the environmental professional, to enhance and supplement federal and state sources... Factors to consider in determining which local or additional state records, if any, should be checked include (1) whether they are reasonably ascertainable, (2) whether they are sufficiently useful, accurate, and complete in light of the objective of the records review (see 7.1.1), and (3) whether they are obtained, pursuant to local, good commercial or customary practice." One of the record sources listed in Section 7.2.2 is water well information. Water well information can be used to assist the environmental professional in assessing sources that may impact groundwater flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS	2.000
Federal FRDS PWS	Nearest PWS within 1 mile
State Database	2.000
Federal FRDS PWS	Nearest PWS within 1 mile

FEDERAL USGS WELL INFORMATION

MAP ID

WELL ID

No Wells Found

LOCATION FROM TP

> LOCATION FROM TP

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

WELL ID

MAP ID

No PWS System Found

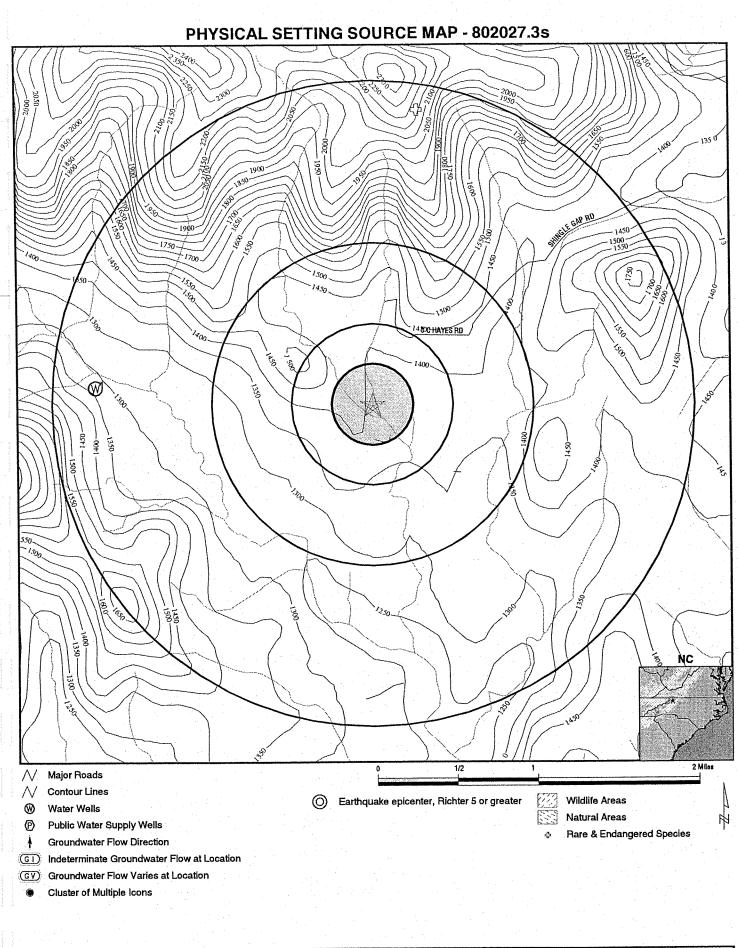
Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID

1

WELL ID NC00004202 LOCATION FROM TP 1 - 2 Miles West


TC802027.3s Page A-5

OTHER STATE DATABASE INFORMATION

NORTH CAROLINA LOCATIONS OF NATURAL HERITAGE DATABASE

ID	Class
0021129	Natural Community Occurrence
0091128	Natural Community Occurrence
0012935	Natural Community Occurrence
0051660	Natural Community Occurrence

TARGET PROPERTY:WRP-Purlear CreekADDRESS:CC Hayes RoadCITY/STATE/ZIP:Purlear NC 28665LAT/LONG:36.1986 / 81.2967	CUSTOMER: Kimley-Horn & Associates, Inc. CONTACT: Andrew Kiley INQUIRY #: 802027.3s DATE: June 20, 2002 2:38 pm
---	--

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

1

Map ID Direction Distance Elevation

West 1 - 2 Miles Lower

EDR ID Number Database NC WELLS NC00004202

Site Name: Public Water Sys. ID: Latitude: Source Name: Responsible Party Tel.: **Retail Population:**

NEW HOPE BAPT CH 0197468 361200.000 WELL (910) 973-4673 322

PWS Type: Longitude: Source Type: Source Availability: **Transient Non-community** 811940.000 Ground Permanent

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Direction	
Distance	

Database EDR ID Number

0021129

NC_NHEO

Site ID: Latitude / Longitude: Classification by Type: Degree of Accuracy associated with coordinate: Occurrence Status: Extant State Status: Not Reported

0021129 36.2250 / -81.2917 Natural Community Occurrence Minutes

> NC_NHEO 0091128

Site ID: Latitude / Longitude: Classification by Type: Degree of Accuracy associated with coordinate: Occurrence Status: Extant Not Reported State Status:

0091128 36.2250 / -81.2917 Natural Community Occurrence Minutes

> NC_NHEO 0012935

Site ID: Latitude / Longitude: Classification by Type: Degree of Accuracy associated with coordinate: Occurrence Status: Extant State Status: Not Reported

0012935 36.2250 / -81.2917 Natural Community Occurrence Minutes

> NC_NHEO 0051660

Site ID: Latitude / Longitude: Classification by Type: Degree of Accuracy associated with coordinate: Occurrence Status: Extant State Status: Not Reported

0051660 36.2250 / -81.2917 Natural Community Occurrence Minutes

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

Federal EPA Radon Zone for WILKES County: 2

- Note: Zone 1 indoor average level > 4 pCi/L.
 - : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.
 - : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 28665

Area	Average Activity	% <4 pCi/L		% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	1.500 pCi/L	100%		0%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	1.00	Not Reported	Not Reported
Basement	3.500 pCi/L	100%		0%	0%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the national Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: In November 1971 the United States Geological Survey (USGS) implemented a national water resource information tracking system. This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on more than 900,000 wells, springs, and other sources of groundwater.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STATE RECORDS

North Carolina Wildlife Resources/Game Lands

Source: Center for Geographic Information and Analysis

Telephone: 919-733-2090

All publicly owned game lands managed by the North Carolina Wildlife Resources Commission and as listed in Hunting and Fishing Maps for North Carolina Game Lands, 1989-90.

North Carolina Rare/Endangered Species and Natural Areas

Source: Natural Heritage Occurrence Sites Center for Geographic Information and Analysis Telephone: 919-733-2090

North Carolina Public Water Supply Wells

Source: Department of Environmental Health

Telephone: 919-715-3243

RADON

Area Radon Information

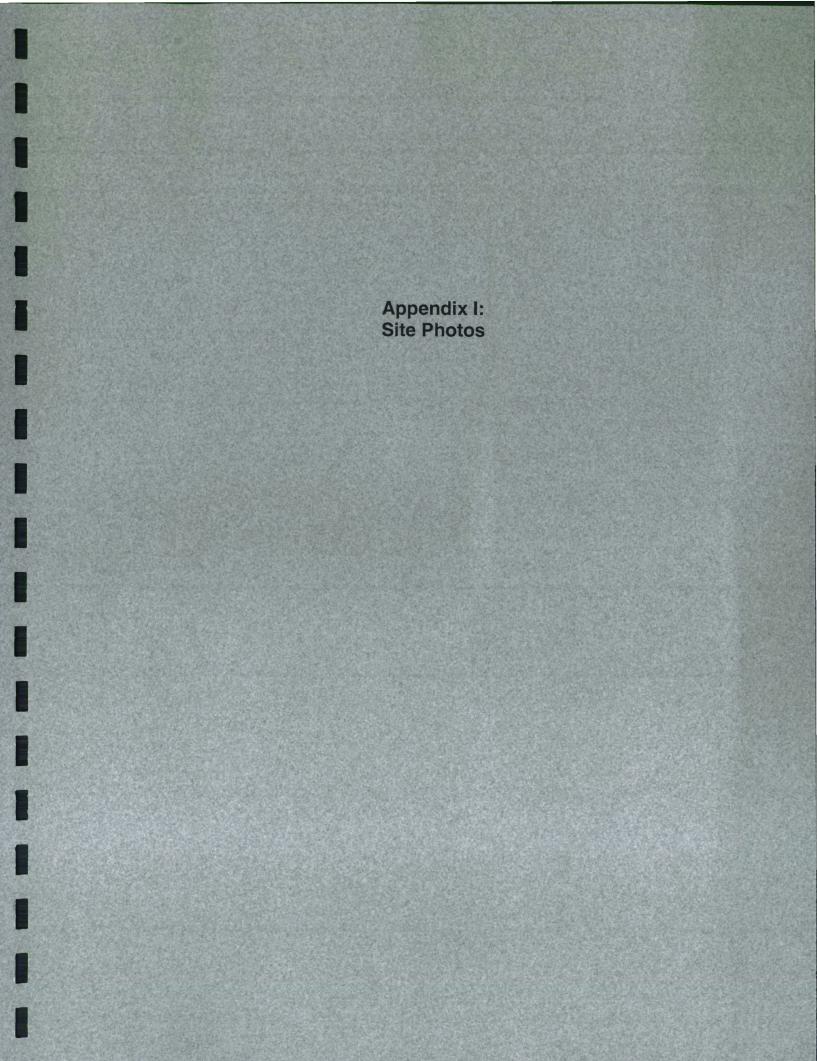
Source: EPA

Telephone: 303-236-1525

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones


Source: EPA

Telephone: 202-564-9370

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Client: WRP

011795011

Page 1 of 1

Job Number:

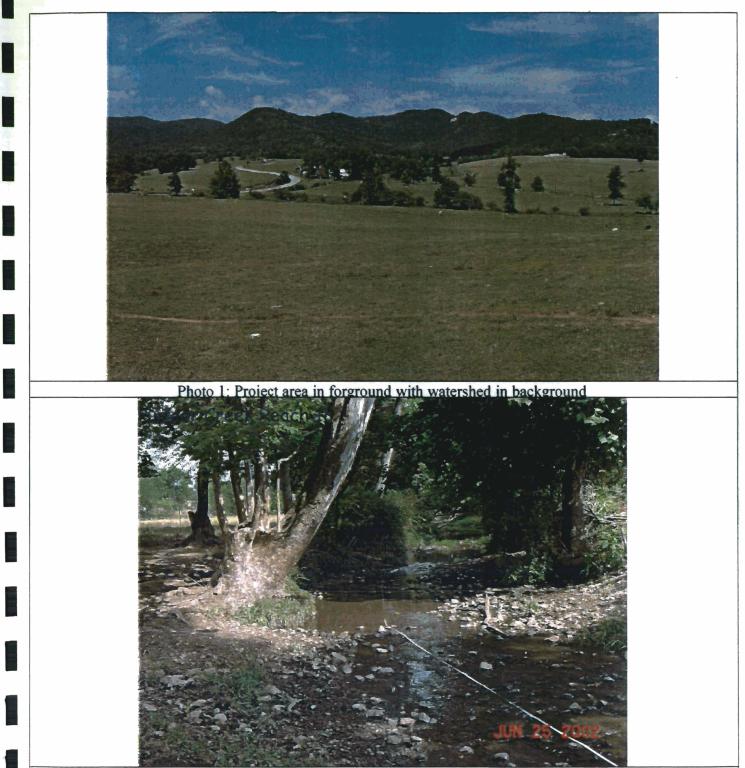


Photo 2: Looking downstream in channel 1a. notice thinly vegetated buffer of mature hardwoods

Project: Purlear Creek Restoration	Prepared by:	Andrew Kiley
Client: WRP	Job Number:	011795011
	Page 2 of 2	

Photo 4: Looking upstream from right bank to left bank at bank undercutting of reach 2

Project: Purlear Creek Restoration	Prepared by:	Andrew Kiley
Client: WRP	Job Number:	011795011
	Page 3 of 3	

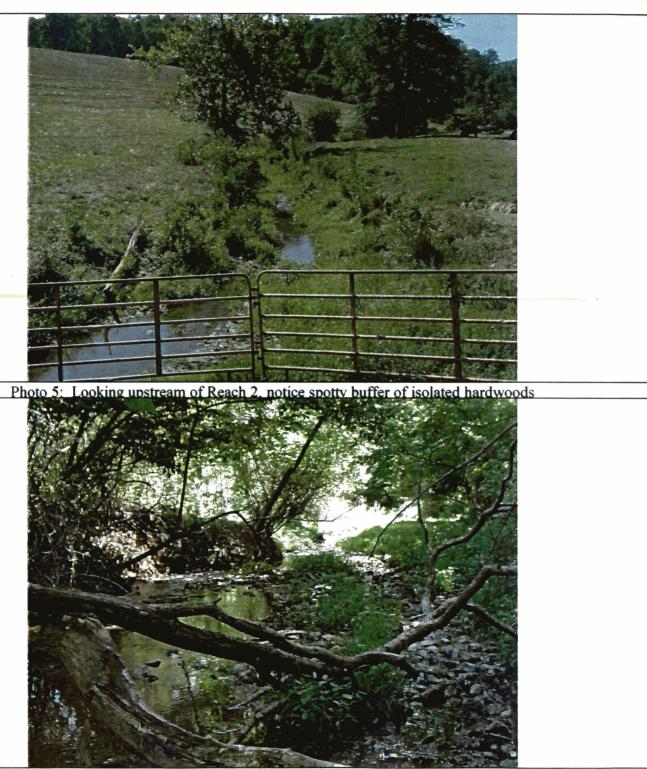
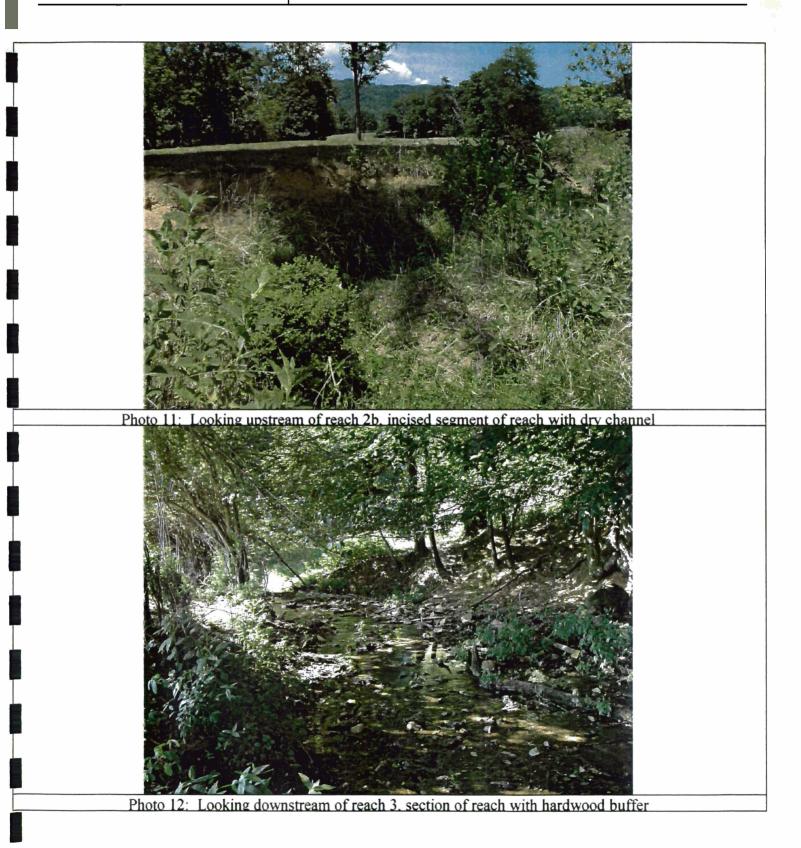
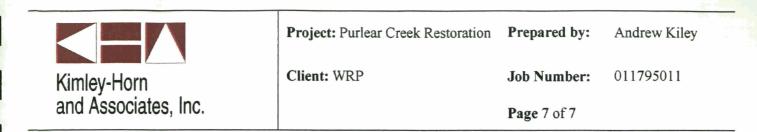
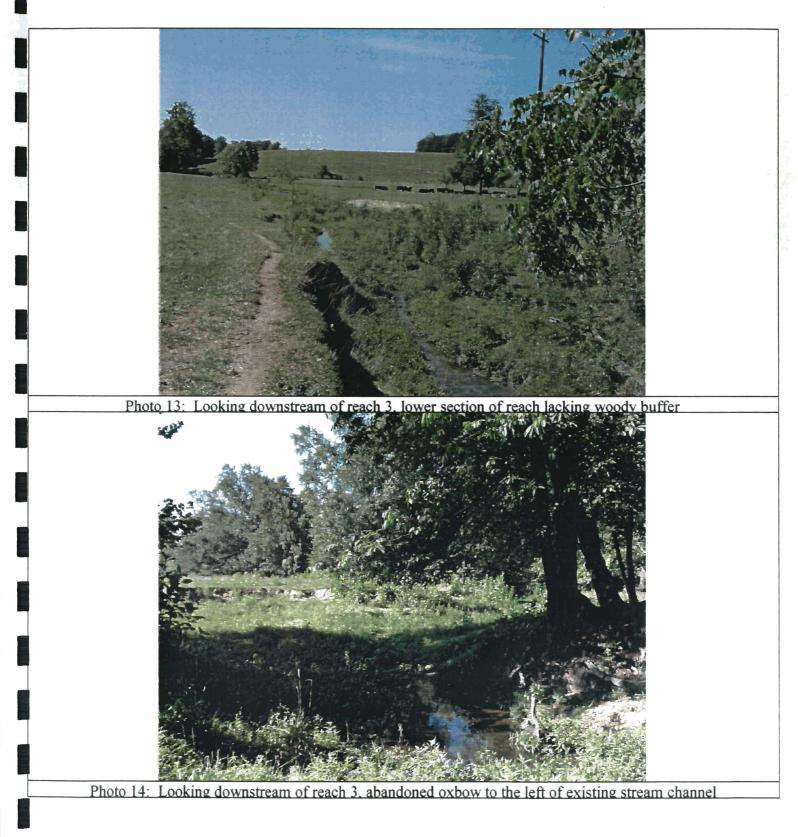


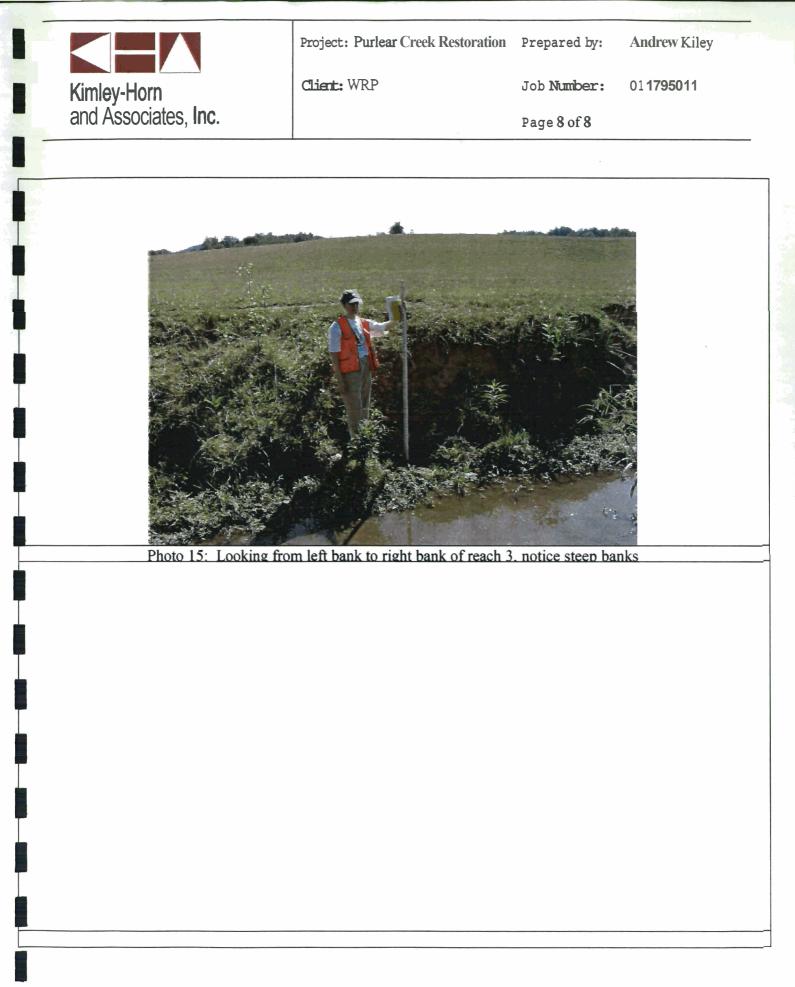
Photo 6: Looking downstream of reach 2a. notice steep banks but increased hardwood buffer

Project: Purlear Creek RestorationPrepared by:Andrew KileyClient: WRPJob Number:011795011Page 4 of 4




Project: Purlear Creek Restoration	Prepared by:	Andrew Kiley
Client: WRP	Job Number:	01 17950 11
	Page 5 of 5	





Project: Purlear Creek Restoration	Prepared by:	Andrew Kiley	
Client: WRP	Job Number:	011795011	
	Page 6 of 6		

